Suppr超能文献

De novo amplification within a "silent" human cholinesterase gene in a family subjected to prolonged exposure to organophosphorous insecticides.

作者信息

Prody C A, Dreyfus P, Zamir R, Zakut H, Soreq H

机构信息

Department of Biological Chemistry, Hebrew University, Jerusalem.

出版信息

Proc Natl Acad Sci U S A. 1989 Jan;86(2):690-4. doi: 10.1073/pnas.86.2.690.

Abstract

A 100-fold DNA amplification in the CHE gene, coding for serum butyrylcholinesterase (BtChoEase), was found in a farmer expressing the "silent" CHE phenotype. Individuals homozygous for this gene display a defective serum BtChoEase and are particularly vulnerable to poisoning by agricultural organophosphorous insecticides, to which all members of this family had long been exposed. DNA blot hybridization with regional BtChoEase cDNA probes suggested that the amplification was most intense in regions encoding central sequences within BtChoEase cDNA, whereas distal sequences were amplified to a much lower extent. This is in agreement with the "onion skin" model, based on amplification of genes in cultured cells and primary tumors. The amplification was absent in the grandparents but present at the same extent in one of their sons and in a grandson, with similar DNA blot hybridization patterns. In situ hybridization experiments localized the amplified sequences to the long arm of chromosome 3, close to the site where we previously mapped the CHE gene. Altogether, these observations suggest that the initial amplification event occurred early in embryogenesis, spermatogenesis, or oogenesis, where the CHE gene is intensely active and where cholinergic functioning was indicated to be physiologically necessary. Our findings demonstrate a de novo amplification in apparently healthy individuals within an autosomal gene producing a target protein to an inhibitor. Its occurrence in two generations from a family under prolonged exposure to parathion indicates that organophosphorous poisons may be implicated in previously unforeseen long-term ecological effects.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b5c/286539/15ecb0892f43/pnas00242-0294-a.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验