Suppr超能文献

量子力学/嵌入原子场方法中的色散相互作用

Dispersion Interactions in QM/EFP.

作者信息

Slipchenko Lyudmila V, Gordon Mark S, Ruedenberg Klaus

机构信息

Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States.

Department of Chemistry and Ames Laboratory, Iowa State University , Ames, Iowa 50011, United States.

出版信息

J Phys Chem A. 2017 Dec 14;121(49):9495-9507. doi: 10.1021/acs.jpca.7b05875. Epub 2017 Dec 5.

Abstract

The dispersion energy term between quantum-mechanical (QM) and classical (represented by effective fragment potentials, EFP) subsystems is developed and implemented. A new formulation is based on long-range perturbation theory and uses dynamic polarizability tensors of the effective fragments and electric field integrals and orbital energies of the quantum-mechanical subsystem. No parametrization is involved. The accuracy of the QM-EFP dispersion energy is tested on a number of model systems; the average mean unsigned error is 0.8 kcal/mol or 13% with respect to the symmetry adapted perturbation theory on the S22 data set of noncovalent interactions. The computational cost of the dispersion energy computation is low compared to the self-consistent field calculation of the QM subsystem. The dispersion energy is sensitive to the level of theory employed for the QM part and to the electrostatic interactions in the system. The latter means that the dispersion interactions in the QM/EFP method are not purely two-body but have more complex many-body behavior.

摘要

开发并实现了量子力学(QM)子系统与经典子系统(由有效片段势,即EFP表示)之间的色散能项。一种新的公式基于长程微扰理论,并使用有效片段的动态极化率张量以及量子力学子系统的电场积分和轨道能量。无需进行参数化。在多个模型系统上测试了QM-EFP色散能的准确性;相对于非共价相互作用S22数据集上的对称适配微扰理论,平均平均无符号误差为0.8 kcal/mol或13%。与QM子系统的自洽场计算相比,色散能计算的计算成本较低。色散能对用于QM部分的理论水平以及系统中的静电相互作用敏感。后者意味着QM/EFP方法中的色散相互作用并非纯粹的两体相互作用,而是具有更复杂的多体行为。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验