Department of Chemical and Biological Engineering, University of Colorado , Boulder, Colorado 80309, United States.
Department of Chemical Engineering, University of Washington , Seattle, Washington 98195, United States.
J Phys Chem B. 2017 Dec 7;121(48):10793-10803. doi: 10.1021/acs.jpcb.7b08435. Epub 2017 Nov 21.
The ability of ionic liquids (ILs) to solubilize cellulose has sparked interest in their use for enzymatic biomass processing. However, this potential is yet to be realized, primarily because ILs inactivate requisite cellulases by mechanisms that are yet to be identified. We used a combination of enzymology, circular dichroism (CD), nuclear magnetic resonance (NMR), and molecular dynamics (MD) methods to investigate the molecular basis for the inactivation of the endocellulase 1 (E1) from Acidothermus cellulolyticus by the imidazolium IL 1-butyl-3-methylimidazolium chloride ([BMIM][Cl]). Enzymatic studies revealed that [BMIM][Cl] inactivates E1 in a biphasic manner that involves rapid, reversible inhibition, followed by slow, irreversible deactivation. Backbone NMR signals of the 40.5 kDa E1 were assigned by triple resonance NMR methods, enabling monitoring of residue-specific perturbations. H-N NMR titration experiments revealed that [BMIM][Cl] binds reversibly to the E1 active site, indicating that reversible deactivation is due to competitive inhibition of substrate binding. Prolonged incubation with [BMIM][Cl] led to substantial global changes in the H-N heteronuclear single quantum coherence NMR and CD spectra of E1 indicative of protein denaturation. Notably, weak interactions between [BMIM][Cl] and residues at the termini of several helices were also observed, which, together with MD simulations, suggest that E1 denaturation is promoted by [BMIM][Cl]-induced destabilization of helix capping structures. In addition to identifying determinants of E1 inactivation, our findings establish a molecular framework for engineering cellulases with improved IL compatibility.
离子液体 (ILs) 溶解纤维素的能力激发了人们对其在酶促生物质加工中的应用的兴趣。然而,这一潜力尚未实现,主要是因为 ILs 通过尚未确定的机制使必需的纤维素酶失活。我们使用酶学、圆二色性 (CD)、核磁共振 (NMR) 和分子动力学 (MD) 方法的组合,研究了来自嗜热纤维梭菌的内切纤维素酶 1 (E1) 被咪唑鎓离子液体 1-丁基-3-甲基咪唑氯化物 ([BMIM][Cl]) 失活的分子基础。酶学研究表明,[BMIM][Cl] 以双相方式使 E1 失活,其中涉及快速、可逆的抑制,随后是缓慢、不可逆的失活。通过三重共振 NMR 方法对 40.5 kDa 的 E1 的骨架 NMR 信号进行了分配,从而能够监测残基特异性的扰动。H-NMR 滴定实验表明,[BMIM][Cl] 可逆地结合到 E1 的活性部位,表明可逆失活是由于底物结合的竞争性抑制。与 [BMIM][Cl] 长时间孵育会导致 E1 的 H-N 异核单量子相干 NMR 和 CD 光谱发生显著的全局变化,表明蛋白质变性。值得注意的是,还观察到 [BMIM][Cl] 与几个螺旋末端残基之间的弱相互作用,这与 MD 模拟一起表明,E1 的变性是由 [BMIM][Cl] 诱导的螺旋帽结构失稳所促进的。除了确定 E1 失活的决定因素外,我们的研究结果还为工程具有改进的 IL 相容性的纤维素酶建立了分子框架。