Schrodinger, Inc. , 120 West 45th Street, New York, New York 10036, United States.
J Chem Theory Comput. 2017 Dec 12;13(12):6290-6300. doi: 10.1021/acs.jctc.7b00885. Epub 2017 Nov 30.
Macrocycles have been emerging as a very important drug class in the past few decades largely due to their expanded chemical diversity benefiting from advances in synthetic methods. Macrocyclization has been recognized as an effective way to restrict the conformational space of acyclic small molecule inhibitors with the hope of improving potency, selectivity, and metabolic stability. Because of their relatively larger size as compared to typical small molecule drugs and the complexity of the structures, efficient sampling of the accessible macrocycle conformational space and accurate prediction of their binding affinities to their target protein receptors poses a great challenge of central importance in computational macrocycle drug design. In this article, we present a novel method for relative binding free energy calculations between macrocycles with different ring sizes and between the macrocycles and their corresponding acyclic counterparts. We have applied the method to seven pharmaceutically interesting data sets taken from recent drug discovery projects including 33 macrocyclic ligands covering a diverse chemical space. The predicted binding free energies are in good agreement with experimental data with an overall root-mean-square error (RMSE) of 0.94 kcal/mol. This is to our knowledge the first time where the free energy of the macrocyclization of linear molecules has been directly calculated with rigorous physics-based free energy calculation methods, and we anticipate the outstanding accuracy demonstrated here across a broad range of target classes may have significant implications for macrocycle drug discovery.
大环化合物在过去几十年中作为一种非常重要的药物类别出现,主要是由于它们在合成方法上的进步,扩大了其化学多样性。大环化已被认为是一种有效的方法,可以限制无环小分子抑制剂的构象空间,从而提高其效力、选择性和代谢稳定性。由于大环化合物的尺寸相对较大,与典型的小分子药物相比,以及结构的复杂性,有效地采样可及的大环构象空间,并准确预测它们与靶蛋白受体的结合亲和力,在计算大环药物设计中具有重要意义。在本文中,我们提出了一种新的方法,用于计算不同环大小的大环化合物之间以及大环化合物与其相应的无环类似物之间的相对结合自由能。我们已经将该方法应用于七个来自最近药物发现项目的具有药物应用价值的数据集,其中包括 33 个大环配体,涵盖了多样化的化学空间。预测的结合自由能与实验数据吻合较好,整体均方根误差(RMSE)为 0.94kcal/mol。据我们所知,这是第一次使用严格的基于物理的自由能计算方法直接计算线性分子的环化自由能,我们预计这里展示的出色准确性可能对大环化合物药物发现具有重要意义。
J Chem Theory Comput. 2017-11-30
J Chem Inf Model. 2017-12-15
J Comput Aided Mol Des. 2020-3
J Chem Theory Comput. 2018-12-11
Methods Mol Biol. 2019
J Chem Theory Comput. 2016-12-9
Pharmaceuticals (Basel). 2025-4-24
Mol Cancer Ther. 2025-7-2
J Chem Inf Model. 2024-11-25
Proc Natl Acad Sci U S A. 2024-1-16
Pharmaceuticals (Basel). 2023-7-17
ACS Med Chem Lett. 2023-6-26