Mishra Saurav Kumar, Shaheen Mir Md, Sultana Sharifa, Al-Dies Al-Anood M, Tayyeb Jehad Zuhair, Alqahtani Taha, Tiruneh Yewulsew Kebede, de Farias Morais Gabriel Christian, Oliveira Jonas Ivan Nobre, Zaki Magdi E A
Department of Bioinformatics, University of North Bengal, District-Darjeeling, Darjeeling, 734013, West Bengal, India.
Computational Biology Research Laboratory, Department of Pharmacy, Daffodil International University, Birulia, Ashulia, Dhaka, 1216, Bangladesh.
Sci Rep. 2025 May 2;15(1):15402. doi: 10.1038/s41598-025-96667-3.
Cervical cancer remains a major global health challenge, largely driven by persistent infections with high-risk human papillomavirus (HPV). Although preventive vaccines have reduced cervical cancer incidence in some settings, effective therapeutic strategies for established HPV-associated malignancies remain limited. High-risk HPV types (particularly 16 and 18) utilize their E6 oncoprotein to promote ubiquitin-mediated degradation of the tumor suppressor p53, thereby facilitating uncontrolled cell proliferation and immune evasion. Targeting E6 has thus emerged as a key strategy to counteract HPV-driven carcinogenesis. In this work, we employed a comprehensive in silico framework-encompassing density functional theory (DFT), ADMET (absorption, distribution, metabolism, excretion, and toxicity) profiling, molecular docking (including refinement and validation), and molecular dynamics (MD) simulations-to evaluate a series of chemically modified lupenone derivatives as potential HPV oncoprotein inhibitors. Initially, lupenone was modified with different functional groups, and each derivative was screened for drug-likeness via ADMET analysis to confirm pharmacological viability. Concurrently, pharmacophore mapping highlighted key alignments between ligand functional groups and pharmacophoric sites, while DFT calculations elucidated each compound's electronic structure, conformational stability, and chemical reactivity. Subsequent docking assessments against E6 oncoprotein and molecular dynamics simulations further confirmed structural robustness in several top-performing compounds, indicating minimal conformational fluctuations over time. These findings demonstrate the potential of lupenone derivatives as promising scaffolds for anti-HPV therapy. However, in vitro and in vivo investigations are necessary to confirm their efficacy, toxicity profiles, and clinical relevance in mitigating HPV-related cervical cancer.
宫颈癌仍然是一项重大的全球健康挑战,主要由高危型人乳头瘤病毒(HPV)的持续感染驱动。尽管预防性疫苗在某些情况下降低了宫颈癌的发病率,但针对已确诊的HPV相关恶性肿瘤的有效治疗策略仍然有限。高危型HPV(尤其是16型和18型)利用其E6癌蛋白促进肿瘤抑制因子p53的泛素介导降解,从而促进细胞不受控制地增殖和免疫逃逸。因此,靶向E6已成为对抗HPV驱动的致癌作用的关键策略。在这项工作中,我们采用了一个全面的计算机模拟框架,包括密度泛函理论(DFT)、ADMET(吸收、分布、代谢、排泄和毒性)分析、分子对接(包括优化和验证)以及分子动力学(MD)模拟,来评估一系列化学修饰羽扇豆酮衍生物作为潜在HPV癌蛋白抑制剂的效果。最初,用不同的官能团对羽扇豆酮进行修饰,并通过ADMET分析对每种衍生物进行类药性筛选,以确认其药理活性。同时进行的药效团图谱突出了配体官能团与药效团位点之间的关键匹配,而DFT计算阐明了每种化合物的电子结构、构象稳定性和化学反应性。随后针对E6癌蛋白的对接评估和分子动力学模拟进一步证实了几种表现优异的化合物的结构稳定性,表示随着时间推移其构象波动极小。这些发现证明了羽扇豆酮衍生物作为抗HPV治疗潜在支架的可能性。然而,需要进行体外和体内研究来确认它们在减轻HPV相关宫颈癌方面的疗效、毒性特征和临床相关性。