Suppr超能文献

色球红杆菌 D-塔格糖 3-差向异构酶的生化分析及初步晶体学特性研究。

Biochemical analysis and the preliminary crystallographic characterization of D-tagatose 3-epimerase from Rhodobacter sphaeroides.

机构信息

Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, People's Republic of China.

Tianjin Key Laboratory of Industrial Microbiology, Tianjin, People's Republic of China.

出版信息

Microb Cell Fact. 2017 Nov 9;16(1):193. doi: 10.1186/s12934-017-0808-4.

Abstract

BACKGROUND

D-Tagatose 3-epimerase epimerizes D-fructose to yield D-psicose, which is a rare sugar that exists in small quantities in nature and is difficult to synthesize chemically. We aim to explore potential industrial biocatalysts for commercial-scale manufacture of this rare sugar. A D-tagatose 3-epimerase from Rhodobacter sphaeroides (RsDTE) has recently been identified as a D-tagatose 3-epimerase that can epimerize D-fructose to yield D-psicose with a high conversion rate.

RESULTS

The purified RsDTE by Ni-affinity chromatography, ionic exchange chromatography and gel filtration forms a tetramer in solution. The maximal activity was in Tris-HCl buffer pH 8.5, and the optimal temperature was at 35 °C. The product, D-psicose, was confirmed using HPLC and NMR. Crystals of RsDTE were obtained using crystal kits and further refined under crystallization conditions such as 10% PEG 8000,0.1 M HEPES pH 7.5, and 8% ethylene glycol at 20 °C using the sitting-drop vapor diffusion method. The RsDTE homology model showed that it possessed the characteristic TIM-barrel fold. Four residues, Glu156, Asp189, Gln215 and Glu250, forms a hydrogen bond network with the active Mn(II) for the hydride transfer reaction. These residues may constitute the catalytic tetrad of RsDTE. The residues around O1, O2 and O3 of the substrates were conserved. However, the binding-site residues are different at O4, O5 and O6. Arg118 formed the unique hydrogen bond with O4 of D-fructose which indicates RsDTE's preference of D-fructose more than any other family enzymes.

CONCLUSIONS

RsDTE possesses a different metal-binding site. Arg118, forming unique hydrogen bond with O4 of D-fructose, regulates the substrate recognition. The research on D-tagatose 3-epimerase or D-psicose 3-epimerase enzymes attracts enormous commercial interest and would be widely used for rare sugar production in the future.

摘要

背景

D-塔格糖 3-差向异构酶将 D-果糖差向异构化为 D-阿洛酮糖,D-阿洛酮糖是一种在自然界中含量很少且难以化学合成的稀有糖。我们旨在探索用于商业规模生产这种稀有糖的潜在工业生物催化剂。最近,从球形红杆菌中鉴定出一种 D-塔格糖 3-差向异构酶(RsDTE),它可以将 D-果糖差向异构化为 D-阿洛酮糖,转化率很高。

结果

通过 Ni-亲和层析、离子交换层析和凝胶过滤纯化的 RsDTE 在溶液中形成四聚体。最大活性在 Tris-HCl 缓冲液 pH8.5,最佳温度在 35°C。使用 HPLC 和 NMR 确认产物为 D-阿洛酮糖。使用晶体试剂盒获得 RsDTE 的晶体,并在 20°C 下使用坐滴蒸汽扩散法在结晶条件下进一步进行晶体制备,结晶条件为 10%PEG8000、0.1MHEPESpH7.5 和 8%乙二醇。RsDTE 同源模型显示它具有特征性 TIM 桶折叠。四个残基Glu156、Asp189、Gln215 和 Glu250 与活性 Mn(II) 形成氢键网络,用于氢化物转移反应。这些残基可能构成 RsDTE 的催化四联体。底物的 O1、O2 和 O3 周围的残基被保守。然而,结合位点的残基在 O4、O5 和 O6 处不同。Arg118 与 D-果糖的 O4 形成独特的氢键,这表明 RsDTE 对 D-果糖的偏好超过任何其他家族酶。

结论

RsDTE 具有不同的金属结合位点。Arg118 与 D-果糖的 O4 形成独特的氢键,调节底物识别。D-塔格糖 3-差向异构酶或 D-阿洛酮糖 3-差向异构酶的研究吸引了巨大的商业兴趣,未来将广泛用于稀有糖的生产。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8785/5679380/93b6fdd57b42/12934_2017_808_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验