Suppr超能文献

增加 HIV-1 基因组 RNA 中的 CpG 二核苷酸丰度可抑制病毒复制。

Increasing the CpG dinucleotide abundance in the HIV-1 genomic RNA inhibits viral replication.

机构信息

Department of Infectious Diseases, King's College London, 3rd Floor Borough Wing, Guy's Hospital, London, SE1 9RT, UK.

出版信息

Retrovirology. 2017 Nov 9;14(1):49. doi: 10.1186/s12977-017-0374-1.

Abstract

BACKGROUND

The human immunodeficiency virus type 1 (HIV-1) structural protein Gag is necessary and sufficient to form viral particles. In addition to encoding the amino acid sequence for Gag, the underlying RNA sequence could encode cis-acting elements or nucleotide biases that are necessary for viral replication. Furthermore, RNA sequences that inhibit viral replication could be suppressed in gag. However, the functional relevance of RNA elements and nucleotide biases that promote or repress HIV-1 replication remain poorly understood.

RESULTS

To characterize if the RNA sequence in gag controls HIV-1 replication, the matrix (MA) region was codon modified, allowing the RNA sequence to be altered without affecting the protein sequence. Codon modification of nucleotides (nt) 22-261 or 22-378 in gag inhibited viral replication by decreasing genomic RNA (gRNA) abundance, gRNA stability, Gag expression, virion production and infectivity. Comparing the effect of these point mutations to deletions of the same region revealed that the mutations inhibited infectious virus production while the deletions did not. This demonstrated that codon modification introduced inhibitory sequences. There is a much lower than expected frequency of CpG dinucleotides in HIV-1 and codon modification introduced a substantial increase in CpG abundance. To determine if they are necessary for inhibition of HIV-1 replication, codons introducing CpG dinucleotides were mutated back to the wild type codon, which restored efficient Gag expression and infectious virion production. To determine if they are sufficient to inhibit viral replication, CpG dinucleotides were inserted into gag in the absence of other changes. The increased CpG dinucleotide content decreased HIV-1 infectivity and viral replication.

CONCLUSIONS

The HIV-1 RNA sequence contains low abundance of CpG dinucleotides. Increasing the abundance of CpG dinucleotides inhibits multiple steps of the viral life cycle, providing a functional explanation for why CpG dinucleotides are suppressed in HIV-1.

摘要

背景

人类免疫缺陷病毒 1 型(HIV-1)结构蛋白 Gag 是形成病毒颗粒所必需且充分的。除了编码 Gag 的氨基酸序列外,基础 RNA 序列还可以编码顺式作用元件或核苷酸偏倚,这些对于病毒复制是必要的。此外,可能会抑制 gag 中的抑制病毒复制的 RNA 序列。然而,促进或抑制 HIV-1 复制的 RNA 元件和核苷酸偏倚的功能相关性仍知之甚少。

结果

为了确定 gag 中的 RNA 序列是否控制 HIV-1 复制,对基质(MA)区进行了密码子修饰,使得 RNA 序列可以改变而不影响蛋白质序列。 gag 中核苷酸(nt)22-261 或 22-378 的密码子修饰通过减少基因组 RNA(gRNA)丰度、gRNA 稳定性、Gag 表达、病毒粒子产生和感染力来抑制病毒复制。将这些点突变的影响与相同区域的缺失进行比较表明,突变抑制了感染性病毒的产生,而缺失则没有。这表明密码子修饰引入了抑制性序列。HIV-1 中的 CpG 二核苷酸的频率远低于预期,密码子修饰大大增加了 CpG 的丰度。为了确定它们是否抑制 HIV-1 复制所必需,将引入 CpG 二核苷酸的密码子突变为野生型密码子,这恢复了有效的 Gag 表达和感染性病毒粒子的产生。为了确定它们是否足以抑制病毒复制,在没有其他变化的情况下将 CpG 二核苷酸插入 gag 中。增加 CpG 二核苷酸的含量降低了 HIV-1 的感染力和病毒复制。

结论

HIV-1 RNA 序列含有低丰度的 CpG 二核苷酸。增加 CpG 二核苷酸的丰度抑制了病毒生命周期的多个步骤,为 CpG 二核苷酸在 HIV-1 中被抑制提供了功能解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59e2/5679385/a15f16618f05/12977_2017_374_Fig1_HTML.jpg

相似文献

1
Increasing the CpG dinucleotide abundance in the HIV-1 genomic RNA inhibits viral replication.
Retrovirology. 2017 Nov 9;14(1):49. doi: 10.1186/s12977-017-0374-1.
8
Subcellular Localization of HIV-1 mRNAs Regulates Sites of Virion Assembly.
J Virol. 2017 Feb 28;91(6). doi: 10.1128/JVI.02315-16. Print 2017 Mar 15.
10
The C-terminal p6 domain of the HIV-1 Pr55 precursor is required for specific binding to the genomic RNA.
RNA Biol. 2018;15(7):923-936. doi: 10.1080/15476286.2018.1481696. Epub 2018 Aug 4.

引用本文的文献

1
Structural and functional characterization of the extended-diKH domain from the antiviral endoribonuclease KHNYN.
J Biol Chem. 2025 Apr;301(4):108336. doi: 10.1016/j.jbc.2025.108336. Epub 2025 Feb 19.
2
Dengue virus preferentially uses human and mosquito non-optimal codons.
Mol Syst Biol. 2024 Oct;20(10):1085-1108. doi: 10.1038/s44320-024-00052-7. Epub 2024 Jul 22.
3
Antiviral Activity of Zinc Finger Antiviral Protein (ZAP) in Different Virus Families.
Pathogens. 2023 Dec 17;12(12):1461. doi: 10.3390/pathogens12121461.
4
Structural and computational studies of HIV-1 RNA.
RNA Biol. 2024 Jan;21(1):1-32. doi: 10.1080/15476286.2023.2289709. Epub 2023 Dec 15.
5
6
A Nuclear Export Signal in KHNYN Required for Its Antiviral Activity Evolved as ZAP Emerged in Tetrapods.
J Virol. 2023 Jan 31;97(1):e0087222. doi: 10.1128/jvi.00872-22. Epub 2023 Jan 12.
7
CpG content in the Zika virus genome affects infection phenotypes in the adult brain and fetal lymph nodes.
Front Immunol. 2022 Aug 2;13:943481. doi: 10.3389/fimmu.2022.943481. eCollection 2022.
8
Next-generation sequencing: A new avenue to understand viral RNA-protein interactions.
J Biol Chem. 2022 May;298(5):101924. doi: 10.1016/j.jbc.2022.101924. Epub 2022 Apr 9.
9
Minimal impact of ZAP on lentiviral vector production and transduction efficiency.
Mol Ther Methods Clin Dev. 2021 Aug 28;23:147-157. doi: 10.1016/j.omtm.2021.08.008. eCollection 2021 Dec 10.
10
S-farnesylation is essential for antiviral activity of the long ZAP isoform against RNA viruses with diverse replication strategies.
PLoS Pathog. 2021 Oct 25;17(10):e1009726. doi: 10.1371/journal.ppat.1009726. eCollection 2021 Oct.

本文引用的文献

1
CG dinucleotide suppression enables antiviral defence targeting non-self RNA.
Nature. 2017 Oct 5;550(7674):124-127. doi: 10.1038/nature24039. Epub 2017 Sep 27.
2
HIV-1 tolerates changes in A-count in a small segment of the pol gene.
Retrovirology. 2017 Sep 5;14(1):43. doi: 10.1186/s12977-017-0367-0.
3
The CpG dinucleotide content of the HIV-1 envelope gene may predict disease progression.
Sci Rep. 2017 Aug 15;7(1):8162. doi: 10.1038/s41598-017-08716-1.
4
Two ribosome recruitment sites direct multiple translation events within HIV1 Gag open reading frame.
Nucleic Acids Res. 2017 Jul 7;45(12):7382-7400. doi: 10.1093/nar/gkx303.
5
Regulation of human immunodeficiency virus type 1 (HIV-1) mRNA translation.
Biochem Soc Trans. 2017 Apr 15;45(2):353-364. doi: 10.1042/BST20160357.
6
Synonymous Codons: Choose Wisely for Expression.
Trends Genet. 2017 Apr;33(4):283-297. doi: 10.1016/j.tig.2017.02.001. Epub 2017 Mar 12.
7
NMR Studies of the Structure and Function of the HIV-1 5'-Leader.
Viruses. 2016 Dec 21;8(12):338. doi: 10.3390/v8120338.
8
Sequence-Specific Sensing of Nucleic Acids.
Trends Immunol. 2017 Jan;38(1):53-65. doi: 10.1016/j.it.2016.10.006. Epub 2016 Nov 14.
9
Source of CpG Depletion in the HIV-1 Genome.
Mol Biol Evol. 2016 Dec;33(12):3205-3212. doi: 10.1093/molbev/msw205. Epub 2016 Sep 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验