School of Biological Sciences, University of Adelaide, Adelaide 5005, Australia.
Seqwater, Ipswich 4305, Australia; Australian Rivers Institute, Griffith University, Nathan 4111, Australia.
Harmful Algae. 2017 Nov;69:18-27. doi: 10.1016/j.hal.2017.09.003. Epub 2017 Oct 10.
An early warning scheme is proposed that runs ensembles of inferential models for predicting the cyanobacterial population dynamics and cyanotoxin concentrations in drinking water reservoirs on a diel basis driven by in situ sonde water quality data. When the 10- to 30-day-ahead predicted concentrations of cyanobacteria cells or cyanotoxins exceed pre-defined limit values, an early warning automatically activates an action plan considering in-lake control, e.g. intermittent mixing and ad hoc water treatment in water works, respectively. Case studies of the sub-tropical Lake Wivenhoe (Australia) and the Mediterranean Vaal Reservoir (South Africa) demonstrate that ensembles of inferential models developed by the hybrid evolutionary algorithm HEA are capable of up to 30days forecasts of cyanobacteria and cyanotoxins using data collected in situ. The resulting models for Dolicospermum circinale displayed validity for up to 10days ahead, whilst concentrations of Cylindrospermopsis raciborskii and microcystins were successfully predicted up to 30days ahead. Implementing the proposed scheme for drinking water reservoirs enhances current water quality monitoring practices by solely utilising in situ monitoring data, in addition to cyanobacteria and cyanotoxin measurements. Access to routinely measured cyanotoxin data allows for development of models that predict explicitly cyanotoxin concentrations that avoid to inadvertently model and predict non-toxic cyanobacterial strains.
提出了一种早期预警方案,该方案运行推理模型的集合,以根据原位声纳水质数据,按日预测饮用水库中蓝藻种群动态和蓝藻毒素浓度。当预测的蓝藻细胞或蓝藻毒素浓度在 10-30 天内超过预先定义的限值时,早期预警会自动激活行动计划,考虑到湖泊内控制措施,例如间歇混合和水工厂的临时水处理。亚利桑那州温弗湖(澳大利亚)和南非瓦尔水库(南非)的案例研究表明,混合进化算法 HEA 开发的推理模型集合能够使用原位收集的数据进行长达 30 天的蓝藻和蓝藻毒素预测。由此产生的 Dolicospermum circinale 模型的有效期最长可达 10 天,而 Cylindrospermopsis raciborskii 和微囊藻毒素的浓度则成功预测了长达 30 天。为饮用水库实施该方案通过仅利用原位监测数据,除了蓝藻和蓝藻毒素测量,增强了当前的水质监测实践。定期测量的蓝藻毒素数据的访问允许开发预测蓝藻毒素浓度的模型,从而避免无意中对无毒蓝藻菌株进行建模和预测。