Department of Materials Science and Engineering, Johns Hopkins University, USA; Institute for Nanobiotechnology, Johns Hopkins University, USA.
Department of Materials Science and Engineering, Johns Hopkins University, USA; Institute for Nanobiotechnology, Johns Hopkins University, USA; Department of Oncology, Johns Hopkins University, Baltimore, MD 21218, USA.
J Control Release. 2018 Jan 10;269:171-176. doi: 10.1016/j.jconrel.2017.11.007. Epub 2017 Nov 7.
Doxil, a liposomal formulation of the chemotherapeutic drug doxorubicin, is FDA-approved for multiple indications. Doxil liposomes are designed to retain doxorubicin in circulation, minimize clearance by the mononuclear phagocyte system, and limit uptake in healthy tissue. Although pharmacokinetic data and survival statistics from clinical trials provide insight into distribution and efficacy, many details of the mechanism of action remain unresolved, despite the importance in translating liposome-based drug delivery systems to other molecules and cargo. Therefore, the objective of this study is to quantitatively assess the kinetics of doxorubicin leakage from Doxil liposomes. In contrast to previous studies, we consider three processes: dissolution of solid doxorubicin, protonation/deprotonation of soluble doxorubicin, and passive transport of neutral doxorubicin across the lipid bilayer of the liposomes. Experiments were performed for Doxil, Doxil-like liposomes, and Doxil-like liposomes with reduced cholesterol and pegylation. To mimic physiological conditions, we also performed experiments in serum and under slightly acidic conditions at pH5. We show that crystalline doxorubicin dissolution can be described by a first order rate constant of 1.0×10cms at 37°C. Doxorubicin leakage can be described by first order rate constant for transport across the lipid bilayer with values in the range from 1 to 3×10cms at 37°C. Based on these results we discuss implications for the mechanism of action, taking Doxil pharmacokinetics into account.
多柔比星脂质体(Doxil)是一种多柔比星的脂质体剂型,已被美国食品药品监督管理局(FDA)批准用于多种适应症。多柔比星脂质体的设计目的是在体内循环中保留多柔比星,最大限度地减少单核吞噬细胞系统的清除率,并限制在健康组织中的摄取。尽管药代动力学数据和临床试验的生存统计数据为药物分布和疗效提供了一些见解,但由于将基于脂质体的药物传递系统转化为其他分子和货物的重要性,其作用机制的许多细节仍未解决。因此,本研究的目的是定量评估多柔比星脂质体中多柔比星的泄漏动力学。与以前的研究不同,我们考虑了三个过程:固态多柔比星的溶解、可溶性多柔比星的质子化/去质子化以及中性多柔比星穿过脂质体双层的被动转运。实验分别在 Doxil、类似 Doxil 的脂质体以及胆固醇和聚乙二醇化减少的类似 Doxil 的脂质体中进行。为了模拟生理条件,我们还在血清中和 pH5 的略酸性条件下进行了实验。我们表明,37°C 时,结晶多柔比星的溶解可以用 1.0×10cms 的一级速率常数来描述。多柔比星的泄漏可以用穿过脂质双层的一级速率常数来描述,其值在 37°C 时的范围为 1 到 3×10cms。基于这些结果,我们讨论了考虑到多柔比星药代动力学的作用机制的影响。