文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于癌症治疗的纳米药物:阻碍未来发展的临床前研究的现状和局限性。

Nanomedicines for cancer therapy: state-of-the-art and limitations to pre-clinical studies that hinder future developments.

机构信息

Institute for Nanobiotechnology, Johns Hopkins University Baltimore, MD, USA ; Johns Hopkins Center of Cancer Nanotechnology Excellence, Johns Hopkins University Baltimore, MD, USA ; Department of Materials Science and Engineering, Johns Hopkins University Baltimore, MD, USA.

出版信息

Front Chem. 2014 Aug 25;2:69. doi: 10.3389/fchem.2014.00069. eCollection 2014.


DOI:10.3389/fchem.2014.00069
PMID:25202689
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4142601/
Abstract

The ability to efficiently deliver a drug or gene to a tumor site is dependent on a wide range of factors including circulation time, interactions with the mononuclear phagocyte system, extravasation from circulation at the tumor site, targeting strategy, release from the delivery vehicle, and uptake in cancer cells. Nanotechnology provides the possibility of creating delivery systems where the design constraints are decoupled, allowing new approaches for reducing the unwanted side effects of systemic delivery, increasing tumor accumulation, and improving efficacy. The physico-chemical properties of nanoparticle-based delivery platforms introduce additional complexity associated with pharmacokinetics, tumor accumulation, and biodistribution. To assess the impact of nanoparticle-based delivery systems, we first review the design strategies and pharmacokinetics of FDA-approved nanomedicines. Next we review nanomedicines under development, summarizing the range of nanoparticle platforms, strategies for targeting, and pharmacokinetics. We show how the lack of uniformity in preclinical trials prevents systematic comparison and hence limits advances in the field.

摘要

将药物或基因有效递送到肿瘤部位的能力取决于多种因素,包括循环时间、与单核吞噬细胞系统的相互作用、在肿瘤部位从循环中外渗、靶向策略、从递药载体中的释放以及在癌细胞中的摄取。纳米技术提供了创建具有解耦设计约束的递药系统的可能性,从而为减少系统递送的不良副作用、增加肿瘤积累和提高疗效提供了新的方法。基于纳米颗粒的递药平台的物理化学性质引入了与药代动力学、肿瘤积累和生物分布相关的额外复杂性。为了评估基于纳米颗粒的递药系统的影响,我们首先综述了已批准的 FDA 纳米药物的设计策略和药代动力学。接下来我们综述了正在开发的纳米药物,总结了纳米颗粒平台、靶向策略和药代动力学的范围。我们展示了临床前试验缺乏一致性如何阻止系统比较,从而限制了该领域的进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff67/4142601/02056769a67e/fchem-02-00069-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff67/4142601/02056769a67e/fchem-02-00069-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff67/4142601/02056769a67e/fchem-02-00069-g0001.jpg

相似文献

[1]
Nanomedicines for cancer therapy: state-of-the-art and limitations to pre-clinical studies that hinder future developments.

Front Chem. 2014-8-25

[2]
State-of-the-art in design rules for drug delivery platforms: lessons learned from FDA-approved nanomedicines.

J Control Release. 2014-8-10

[3]
Nanoparticle based medicines: approaches for evading and manipulating the mononuclear phagocyte system and potential for clinical translation.

Biomater Sci. 2022-6-14

[4]
Ligand-targeted particulate nanomedicines undergoing clinical evaluation: current status.

Adv Drug Deliv Rev. 2013-9-6

[5]
Science and technology of the emerging nanomedicines in cancer therapy: A primer for physicians and pharmacists.

SAGE Open Med. 2013-11-23

[6]
The Clinical Translation of Organic Nanomaterials for Cancer Therapy: A Focus on Polymeric Nanoparticles, Micelles, Liposomes and Exosomes.

Curr Med Chem. 2018

[7]
Exploring and Analyzing the Systemic Delivery Barriers for Nanoparticles.

Adv Funct Mater. 2024-2-19

[8]
Insights into Active Targeting of Nanoparticles in Drug Delivery: Advances in Clinical Studies and Design Considerations for Cancer Nanomedicine.

Bioconjug Chem. 2019-9-6

[9]
Nanosize drug delivery system.

Curr Pharm Biotechnol. 2013

[10]
New Strategies in the Design of Nanomedicines to Oppose Uptake by the Mononuclear Phagocyte System and Enhance Cancer Therapeutic Efficacy.

Chem Asian J. 2018-3-30

引用本文的文献

[1]
Nanotechnology in Hematology: Enhancing Therapeutic Efficacy With Nanoparticles.

Health Sci Rep. 2025-5-19

[2]
Exosome-based cancer vaccine: a cell-free approach.

Mol Biol Rep. 2025-4-24

[3]
MicroRNA-targeted nanoparticle delivery systems for cancer therapy: current status and future prospects.

Nanomedicine (Lond). 2025-5

[4]
Alternative Strategies for Delivering Immunotherapeutics Targeting the PD-1/PD-L1 Immune Checkpoint in Cancer.

Pharmaceutics. 2024-9-7

[5]
Targeting ferroptosis for leukemia therapy: exploring novel strategies from its mechanisms and role in leukemia based on nanotechnology.

Eur J Med Res. 2024-4-9

[6]
Applications of Nanomedicine in Brain Tumor Therapy: Nanocarrierbased Drug Delivery Platforms, Challenges, and Perspectives.

Recent Pat Nanotechnol. 2025

[7]
A di-electrophoretic simulation procedure of iron-oxide micro-particle drug attachment system for leukemia treatment using COMSOL software: a potential treatment reference for LMICs.

Front Med Technol. 2023-10-12

[8]
Emetic Tartar-Loaded Liposomes as a New Strategy for Leishmaniasis Treatment.

Pharmaceutics. 2023-3-10

[9]
Recent Developments in the Study of the Microenvironment of Cancer and Drug Delivery.

Curr Drug Metab. 2022

[10]
Nanoparticles augment the therapeutic window of RT and immunotherapy for treating cancers: pivotal role of autophagy.

Theranostics. 2023

本文引用的文献

[1]
Nanoparticles, Proteins, and Nucleic Acids: Biotechnology Meets Materials Science.

Angew Chem Int Ed Engl. 2001-11-19

[2]
State-of-the-art in design rules for drug delivery platforms: lessons learned from FDA-approved nanomedicines.

J Control Release. 2014-8-10

[3]
Photosensitizer loaded nano-graphene for multimodality imaging guided tumor photodynamic therapy.

Theranostics. 2014-1-15

[4]
Construction and validation of nano gold tripods for molecular imaging of living subjects.

J Am Chem Soc. 2014-3-5

[5]
Passive versus active tumor targeting using RGD- and NGR-modified polymeric nanomedicines.

Nano Lett. 2014-2-12

[6]
Self-illuminating 64Cu-doped CdSe/ZnS nanocrystals for in vivo tumor imaging.

J Am Chem Soc. 2014-1-17

[7]
PEGylated nanomedicines: recent progress and remaining concerns.

Expert Opin Drug Deliv. 2013-12-3

[8]
PRECEDENT: a randomized phase II trial comparing vintafolide (EC145) and pegylated liposomal doxorubicin (PLD) in combination versus PLD alone in patients with platinum-resistant ovarian cancer.

J Clin Oncol. 2013-10-14

[9]
Overcoming nonviral gene delivery barriers: perspective and future.

Mol Pharm. 2013-11-4

[10]
In vivo tumor targeting and image-guided drug delivery with antibody-conjugated, radiolabeled mesoporous silica nanoparticles.

ACS Nano. 2013-10-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索