Suppr超能文献

玉米异常染色体 10 减数分裂驱动系统的适应代价和传递扭曲的变化。

Fitness Costs and Variation in Transmission Distortion Associated with the Abnormal Chromosome 10 Meiotic Drive System in Maize.

机构信息

Department of Plant Biology, University of Georgia, Athens, Georgia 30604.

Department of Genetics, University of Georgia, Athens, Georgia 30604.

出版信息

Genetics. 2018 Jan;208(1):297-305. doi: 10.1534/genetics.117.300060. Epub 2017 Nov 9.

Abstract

Meiotic drive describes a process whereby selfish genetic elements are transmitted at levels greater than Mendelian expectations. Maize abnormal chromosome 10 (Ab10) encodes a meiotic drive system that exhibits strong preferential segregation through female gametes. We performed transmission assays on nine Ab10 chromosomes from landraces and teosinte lines and found a transmission advantage of 62-79% in heterozygotes. Despite this transmission advantage, Ab10 is present at low frequencies in natural populations, suggesting that it carries large negative fitness consequences. We measured pollen transmission, the percentage of live pollen, seed production, and seed size to estimate several of the possible fitness effects of Ab10. We found no evidence that Ab10 affects pollen transmission, , Ab10 and N10 pollen are transmitted equally from heterozygous fathers. However, at the diploid (sporophyte) level, both heterozygous and homozygous Ab10-I-MMR individuals show decreased pollen viability, decreased seed set, and decreased seed weight. The observed fitness costs can nearly but not entirely account for the observed frequencies of Ab10. Sequence analysis shows a surprising amount of molecular variation among Ab10 haplotypes, suggesting that there may be other phenotypic variables that contribute to the low but stable equilibrium frequencies.

摘要

减数分裂驱动描述了一种自私的遗传元件以超过孟德尔预期的水平传递的过程。玉米异常染色体 10(Ab10)编码一种减数分裂驱动系统,通过雌性配子表现出强烈的优先分离。我们对来自地方品种和野生玉米的九条 Ab10 染色体进行了传递分析,发现杂合子中的传递优势为 62-79%。尽管有这种传递优势,但 Ab10 在自然种群中的频率较低,这表明它携带了较大的负适应度后果。我们测量了花粉传递、活花粉的百分比、种子产量和种子大小,以估计 Ab10 的几种可能的适应度效应。我们没有发现 Ab10 影响花粉传递的证据,无论是杂合子还是纯合子的 Ab10 和 N10 花粉,从杂合子父亲那里传递的比例是相等的。然而,在二倍体(孢子体)水平上,Ab10-I-MMR 的杂合子和纯合子个体都表现出花粉活力降低、种子产量降低和种子重量降低。观察到的适应度成本几乎可以解释 Ab10 的观察到的频率,但不能完全解释。序列分析显示 Ab10 单倍型之间存在惊人的分子变异,这表明可能存在其他表型变量,有助于 Ab10 的低但稳定的平衡频率。

相似文献

1
2
The maize abnormal chromosome 10 meiotic drive haplotype: a review.
Chromosome Res. 2022 Sep;30(2-3):205-216. doi: 10.1007/s10577-022-09693-6. Epub 2022 Jun 2.
3
Meiotic drive of chromosomal knobs reshaped the maize genome.
Genetics. 1999 Sep;153(1):415-26. doi: 10.1093/genetics/153.1.415.
4
Diversity and abundance of the abnormal chromosome 10 meiotic drive complex in Zea mays.
Heredity (Edinb). 2013 Jun;110(6):570-7. doi: 10.1038/hdy.2013.2. Epub 2013 Feb 27.
5
The maize Ab10 meiotic drive system maps to supernumerary sequences in a large complex haplotype.
Genetics. 2006 Sep;174(1):145-54. doi: 10.1534/genetics.105.048322. Epub 2006 Jul 18.
6
Modeling the Evolution of Female Meiotic Drive in Maize.
G3 (Bethesda). 2018 Jan 4;8(1):123-130. doi: 10.1534/g3.117.300073.
7
The meiotic drive system on maize abnormal chromosome 10 contains few essential genes.
Genetica. 2003 Jan;117(1):67-76. doi: 10.1023/a:1022316716682.
8
Four loci on abnormal chromosome 10 contribute to meiotic drive in maize.
Genetics. 2003 Jun;164(2):699-709. doi: 10.1093/genetics/164.2.699.
9
A Kinesin-14 Motor Activates Neocentromeres to Promote Meiotic Drive in Maize.
Cell. 2018 May 3;173(4):839-850.e18. doi: 10.1016/j.cell.2018.03.009. Epub 2018 Apr 5.
10
Distinct kinesin motors drive two types of maize neocentromeres.
Genes Dev. 2020 Sep 1;34(17-18):1239-1251. doi: 10.1101/gad.340679.120. Epub 2020 Aug 20.

引用本文的文献

1
Genetic and environmental influences on the distributions of three chromosomal drive haplotypes in maize.
PLoS Genet. 2025 Jul 16;21(7):e1011742. doi: 10.1371/journal.pgen.1011742. eCollection 2025 Jul.
2
Genetic and environmental influences on the distributions of three chromosomal drive haplotypes in maize.
bioRxiv. 2025 May 27:2025.05.22.655462. doi: 10.1101/2025.05.22.655462.
3
Antagonistic kinesin-14s within a single chromosomal drive haplotype.
bioRxiv. 2025 Feb 7:2025.02.05.636711. doi: 10.1101/2025.02.05.636711.
4
Mechanisms, Machinery, and Dynamics of Chromosome Segregation in .
Genes (Basel). 2024 Dec 16;15(12):1606. doi: 10.3390/genes15121606.
5
Inter-clonal competition over queen succession imposes a cost of parthenogenesis on termite colonies.
Proc Biol Sci. 2024 May;291(2023):20232711. doi: 10.1098/rspb.2023.2711. Epub 2024 May 22.
6
The structure, function, and evolution of plant centromeres.
Genome Res. 2024 Mar 20;34(2):161-178. doi: 10.1101/gr.278409.123.
8
Supergene potential of a selfish centromere.
Philos Trans R Soc Lond B Biol Sci. 2022 Aug;377(1856):20210208. doi: 10.1098/rstb.2021.0208. Epub 2022 Jun 13.
9
The maize abnormal chromosome 10 meiotic drive haplotype: a review.
Chromosome Res. 2022 Sep;30(2-3):205-216. doi: 10.1007/s10577-022-09693-6. Epub 2022 Jun 2.
10
A Heterochromatic Knob Reducing the Flowering Time in Maize.
Front Genet. 2022 Feb 24;12:799681. doi: 10.3389/fgene.2021.799681. eCollection 2021.

本文引用的文献

1
Modeling the Evolution of Female Meiotic Drive in Maize.
G3 (Bethesda). 2018 Jan 4;8(1):123-130. doi: 10.1534/g3.117.300073.
2
Improved maize reference genome with single-molecule technologies.
Nature. 2017 Jun 22;546(7659):524-527. doi: 10.1038/nature22971. Epub 2017 Jun 12.
3
Draft Assembly of Elite Inbred Line PH207 Provides Insights into Genomic and Transcriptome Diversity in Maize.
Plant Cell. 2016 Nov;28(11):2700-2714. doi: 10.1105/tpc.16.00353. Epub 2016 Nov 1.
4
The Maize Divergent spindle-1 (dv1) Gene Encodes a Kinesin-14A Motor Protein Required for Meiotic Spindle Pole Organization.
Front Plant Sci. 2016 Aug 25;7:1277. doi: 10.3389/fpls.2016.01277. eCollection 2016.
5
Occasional recombination of a selfish X-chromosome may permit its persistence at high frequencies in the wild.
J Evol Biol. 2016 Nov;29(11):2229-2241. doi: 10.1111/jeb.12948. Epub 2016 Aug 10.
6
The Ensembl Variant Effect Predictor.
Genome Biol. 2016 Jun 6;17(1):122. doi: 10.1186/s13059-016-0974-4.
7
Centromere-associated meiotic drive and female fitness variation in Mimulus.
Evolution. 2015 May;69(5):1208-18. doi: 10.1111/evo.12661. Epub 2015 May 8.
8
PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels.
Bioinformatics. 2015 Aug 15;31(16):2745-7. doi: 10.1093/bioinformatics/btv195. Epub 2015 Apr 6.
9
From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline.
Curr Protoc Bioinformatics. 2013;43(1110):11.10.1-11.10.33. doi: 10.1002/0471250953.bi1110s43.
10
Centromere strength provides the cell biological basis for meiotic drive and karyotype evolution in mice.
Curr Biol. 2014 Oct 6;24(19):2295-300. doi: 10.1016/j.cub.2014.08.017. Epub 2014 Sep 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验