Natarajan Sriraam, Bangera Vishal, Khot Tushar, Picado Jose, Wazalwar Anurag, Costa Vitor Santos, Page David, Caldwell Michael
Indiana University, University of Wisconsin-Madison.
Indiana University, Oregon State University.
Knowl Inf Syst. 2017 May;51(2):435-457. doi: 10.1007/s10115-016-0980-6. Epub 2016 Aug 8.
Adverse drug events (ADEs) are a major concern and point of emphasis for the medical profession, government, and society. A diverse set of techniques from epidemiology, statistics, and computer science are being proposed and studied for ADE discovery from observational health data (e.g., EHR and claims data), social network data (e.g., Google and Twitter posts), and other information sources. Methodologies are needed for evaluating, quantitatively measuring, and comparing the ability of these various approaches to accurately discover ADEs. This work is motivated by the observation that text sources such as the Medline/Medinfo library provide a wealth of information on human health. Unfortunately, ADEs often result from unexpected interactions, and the connection between conditions and drugs is not explicit in these sources. Thus, in this work we address the question of whether we can quantitatively estimate relationships between drugs and conditions from the medical literature. This paper proposes and studies a state-of-the-art NLP-based extraction of ADEs from text.
药物不良事件(ADEs)是医学界、政府和社会主要关注的问题及重点。为了从观察性健康数据(如电子健康记录和理赔数据)、社交网络数据(如谷歌和推特帖子)及其他信息源中发现药物不良事件,人们正在提出并研究一系列来自流行病学、统计学和计算机科学的不同技术。需要有方法来评估、定量测量和比较这些不同方法准确发现药物不良事件的能力。这项工作的动机源于这样的观察,即诸如Medline/Medinfo库等文本来源提供了大量有关人类健康的信息。不幸的是,药物不良事件往往是由意外的相互作用导致的,而且在这些来源中病症与药物之间的联系并不明确。因此,在这项工作中,我们要解决的问题是,能否从医学文献中定量估计药物与病症之间的关系。本文提出并研究了一种基于自然语言处理(NLP)的从文本中提取药物不良事件的先进方法。