Odom Phillip, Bangera Vishal, Khot Tushar, Page David, Natarajan Sriraam
Indiana University Bloomington.
Allen Institute of AI.
Artif Intell Med Conf Artif Intell Med (2005-). 2015;2015:195-204. doi: 10.1007/978-3-319-19551-3_26.
Adverse drug events (ADEs) are a major concern and point of emphasis for the medical profession, government, and society in general. When methods extract ADEs from observational data, there is a necessity to evaluate these methods. More precisely, it is important to know what is already known in the literature. Consequently, we employ a novel relation extraction technique based on a recently developed probabilistic logic learning algorithm that exploits human advice. We demonstrate on a standard adverse drug events data base that the proposed approach can successfully extract existing adverse drug events from limited amount of training data and compares favorably with state-of-the-art probabilistic logic learning methods.
药物不良事件(ADEs)是医学界、政府以及整个社会主要关注和强调的问题。当从观测数据中提取药物不良事件的方法出现时,有必要对这些方法进行评估。更确切地说,了解文献中已有的内容很重要。因此,我们采用了一种基于最近开发的利用人类建议的概率逻辑学习算法的新型关系提取技术。我们在一个标准的药物不良事件数据库上证明,所提出的方法可以从有限数量的训练数据中成功提取现有的药物不良事件,并且与最先进的概率逻辑学习方法相比具有优势。