Suppr超能文献

从电子健康记录笔记中提取与药物安全监测相关的信息:使用知识感知神经注意力模型对实体和关系进行联合建模

Extraction of Information Related to Drug Safety Surveillance From Electronic Health Record Notes: Joint Modeling of Entities and Relations Using Knowledge-Aware Neural Attentive Models.

作者信息

Dandala Bharath, Joopudi Venkata, Tsou Ching-Huei, Liang Jennifer J, Suryanarayanan Parthasarathy

机构信息

IBM Research, Yorktown Heights, NY, United States.

出版信息

JMIR Med Inform. 2020 Jul 10;8(7):e18417. doi: 10.2196/18417.

Abstract

BACKGROUND

An adverse drug event (ADE) is commonly defined as "an injury resulting from medical intervention related to a drug." Providing information related to ADEs and alerting caregivers at the point of care can reduce the risk of prescription and diagnostic errors and improve health outcomes. ADEs captured in structured data in electronic health records (EHRs) as either coded problems or allergies are often incomplete, leading to underreporting. Therefore, it is important to develop capabilities to process unstructured EHR data in the form of clinical notes, which contain a richer documentation of a patient's ADE. Several natural language processing (NLP) systems have been proposed to automatically extract information related to ADEs. However, the results from these systems showed that significant improvement is still required for the automatic extraction of ADEs from clinical notes.

OBJECTIVE

This study aims to improve the automatic extraction of ADEs and related information such as drugs, their attributes, and reason for administration from the clinical notes of patients.

METHODS

This research was conducted using discharge summaries from the Medical Information Mart for Intensive Care III (MIMIC-III) database obtained through the 2018 National NLP Clinical Challenges (n2c2) annotated with drugs, drug attributes (ie, strength, form, frequency, route, dosage, duration), ADEs, reasons, and relations between drugs and other entities. We developed a deep learning-based system for extracting these drug-centric concepts and relations simultaneously using a joint method enhanced with contextualized embeddings, a position-attention mechanism, and knowledge representations. The joint method generated different sentence representations for each drug, which were then used to extract related concepts and relations simultaneously. Contextualized representations trained on the MIMIC-III database were used to capture context-sensitive meanings of words. The position-attention mechanism amplified the benefits of the joint method by generating sentence representations that capture long-distance relations. Knowledge representations were obtained from graph embeddings created using the US Food and Drug Administration Adverse Event Reporting System database to improve relation extraction, especially when contextual clues were insufficient.

RESULTS

Our system achieved new state-of-the-art results on the n2c2 data set, with significant improvements in recognizing crucial drug-reason (F1=0.650 versus F1=0.579) and drug-ADE (F1=0.490 versus F1=0.476) relations.

CONCLUSIONS

This study presents a system for extracting drug-centric concepts and relations that outperformed current state-of-the-art results and shows that contextualized embeddings, position-attention mechanisms, and knowledge graph embeddings effectively improve deep learning-based concepts and relation extraction. This study demonstrates the potential for deep learning-based methods to help extract real-world evidence from unstructured patient data for drug safety surveillance.

摘要

背景

药物不良事件(ADE)通常被定义为“与药物相关的医疗干预导致的伤害”。提供与药物不良事件相关的信息并在护理点提醒护理人员,可以降低处方和诊断错误的风险,并改善健康结果。电子健康记录(EHR)结构化数据中记录为编码问题或过敏的药物不良事件往往不完整,导致报告不足。因此,开发处理临床笔记形式的非结构化电子健康记录数据的能力很重要,因为临床笔记包含患者药物不良事件更丰富的记录。已经提出了几种自然语言处理(NLP)系统来自动提取与药物不良事件相关的信息。然而,这些系统的结果表明,从临床笔记中自动提取药物不良事件仍需要显著改进。

目的

本研究旨在改进从患者临床笔记中自动提取药物不良事件及相关信息,如药物、其属性和给药原因。

方法

本研究使用通过2018年国家NLP临床挑战(n2c2)获得的重症监护医学信息库III(MIMIC-III)数据库中的出院小结进行,这些小结标注了药物、药物属性(即强度、剂型、频率、途径、剂量、持续时间)、药物不良事件、原因以及药物与其他实体之间的关系。我们开发了一个基于深度学习的系统,使用上下文嵌入、位置注意力机制和知识表示增强的联合方法,同时提取这些以药物为中心的概念和关系。联合方法为每种药物生成不同的句子表示,然后用于同时提取相关概念和关系。在MIMIC-III数据库上训练的上下文表示用于捕捉单词的上下文敏感含义。位置注意力机制通过生成捕捉远距离关系的句子表示,增强了联合方法的效果。知识表示从使用美国食品药品监督管理局不良事件报告系统数据库创建的图嵌入中获得,以改善关系提取,特别是在上下文线索不足时。

结果

我们的系统在n2c2数据集上取得了新的最优结果,在识别关键的药物-原因关系(F1 = 0.650对F1 = 0.579)和药物-药物不良事件关系(F1 = 0.490对F1 = 0.476)方面有显著改进。

结论

本研究提出了一个用于提取以药物为中心的概念和关系的系统,其性能优于当前的最优结果,并表明上下文嵌入、位置注意力机制和知识图谱嵌入有效地改进了基于深度学习的概念和关系提取。本研究证明了基于深度学习的方法有助于从非结构化患者数据中提取真实世界证据用于药物安全监测的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a903/7382020/99b9f6c0cd76/medinform_v8i7e18417_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验