Nataf Serge
CarMeN Laboratory, Bank of Tissues and Cells, Institut National de la Santé et de la Recherche Médicale 1060, INRA 1397, INSA Lyon, Lyon University Hospital (Hospices Civils de Lyon), Université Claude Bernard Lyon-1, Lyon, France.
Front Neurosci. 2017 Oct 26;11:582. doi: 10.3389/fnins.2017.00582. eCollection 2017.
In the last decades, increasingly robust experimental approaches have formally demonstrated that autoimmunity is a physiological process involved in a large range of functions including cognition. On this basis, the recently enunciated "brain superautoantigens" theory proposes that autoimmunity has been a driving force of cognitive evolution. It is notably suggested that the immune and nervous systems have somehow co-evolved and exerted a mutual selection pressure benefiting to both systems. In this two-way process, the evolutionary-determined emergence of neurons expressing specific immunogenic antigens (brain superautoantigens) has exerted a selection pressure on immune genes shaping the T-cell repertoire. Such a selection pressure on immune genes has translated into the emergence of a finely tuned autoimmune T-cell repertoire that promotes cognition. In another hand, the evolutionary-determined emergence of brain-autoreactive T-cells has exerted a selection pressure on neural genes coding for brain superautoantigens. Such a selection pressure has translated into the emergence of a neural repertoire (defined here as the whole of neurons, synapses and non-neuronal cells involved in cognitive functions) expressing brain superautoantigens. Overall, the brain superautoantigens theory suggests that cognitive evolution might have been primarily driven by internal cues rather than external environmental conditions. Importantly, while providing a unique molecular connection between neural and T-cell repertoires under physiological conditions, brain superautoantigens may also constitute an Achilles heel responsible for the particular susceptibility of to "neuroimmune co-pathologies" i.e., disorders affecting both neural and T-cell repertoires. These may notably include paraneoplastic syndromes, multiple sclerosis as well as autism, schizophrenia and neurodegenerative diseases. In the context of this theoretical frame, a specific emphasis is given here to the potential evolutionary role exerted by two families of genes, namely the MHC class II genes, involved in antigen presentation to T-cells, and the Foxp genes, which play crucial roles in language (Foxp2) and the regulation of autoimmunity (Foxp3).
在过去几十年中,越来越强大的实验方法已正式证明,自身免疫是一个涉及包括认知在内的广泛功能的生理过程。在此基础上,最近提出的“脑超级自身抗原”理论认为,自身免疫一直是认知进化的驱动力。特别值得一提的是,免疫和神经系统在某种程度上共同进化,并对两个系统都施加了相互选择压力。在这个双向过程中,表达特定免疫原性抗原(脑超级自身抗原)的神经元的进化决定的出现,对塑造T细胞库的免疫基因施加了选择压力。这种对免疫基因的选择压力已转化为促进认知的精细调节的自身免疫性T细胞库的出现。另一方面,脑自身反应性T细胞的进化决定的出现,对编码脑超级自身抗原的神经基因施加了选择压力。这种选择压力已转化为表达脑超级自身抗原的神经库(在此定义为参与认知功能的所有神经元、突触和非神经元细胞)的出现。总体而言,脑超级自身抗原理论表明,认知进化可能主要由内部线索而非外部环境条件驱动。重要的是,脑超级自身抗原虽然在生理条件下为神经和T细胞库之间提供了独特的分子联系,但也可能构成导致对“神经免疫共同病理”(即影响神经和T细胞库的疾病)特别易感性的致命弱点。这些疾病可能尤其包括副肿瘤综合征、多发性硬化症以及自闭症、精神分裂症和神经退行性疾病。在这个理论框架的背景下,这里特别强调了两个基因家族所发挥的潜在进化作用,即参与向T细胞呈递抗原的MHC II类基因,以及在语言(Foxp2)和自身免疫调节(Foxp3)中起关键作用的Foxp基因。