Suppr超能文献

基于傅里叶变换近红外光谱结合多元分析与波长选择算法消除苹果可溶性固形物含量检测中的无信息生物变异

Uninformative Biological Variability Elimination in Apple Soluble Solids Content Inspection by Using Fourier Transform Near-Infrared Spectroscopy Combined with Multivariate Analysis and Wavelength Selection Algorithm.

作者信息

Zhang Lin, Zhang Baohua, Zhou Jun, Gu Baoxing, Tian Guangzhao

机构信息

College of Engineering, Nanjing Agricultural University, Nanjing, Jiangsu 210031, China.

出版信息

J Anal Methods Chem. 2017;2017:2525147. doi: 10.1155/2017/2525147. Epub 2017 Oct 16.

Abstract

Uninformative biological variability elimination methods were studied in the near-infrared calibration model for predicting the soluble solids content of apples. Four different preprocessing methods, namely, Savitzky-Golay smoothing, multiplicative scatter correction, standard normal variate, and mean normalization, as well as their combinations were conducted on raw Fourier transform near-infrared spectra to eliminate the uninformative biological variability. Subsequently, robust calibration models were established by using partial least squares regression analysis and wavelength selection algorithms. Results indicated that the partial least squares calibration models with characteristic variables selected by CARS method coupled with preprocessing of Savitzky-Golay smoothing and multiplicative scatter correction had a considerable potential for predicting apple soluble solids content regardless of the biological variability.

摘要

在用于预测苹果可溶性固形物含量的近红外校准模型中,研究了无信息生物变异性消除方法。对原始傅里叶变换近红外光谱进行了四种不同的预处理方法,即Savitzky-Golay平滑、多元散射校正、标准正态变量变换和均值归一化,以及它们的组合,以消除无信息生物变异性。随后,使用偏最小二乘回归分析和波长选择算法建立了稳健的校准模型。结果表明,采用CARS方法选择特征变量并结合Savitzky-Golay平滑和多元散射校正预处理的偏最小二乘校准模型,无论生物变异性如何,都具有预测苹果可溶性固形物含量的巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3286/5662809/64c5fa0f8e02/JAMC2017-2525147.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验