Suppr超能文献

基于可见-近红外光谱的雪桃品质检测中稳健分析模型构建方法及有效性机制研究

Research on construction method and validity mechanism of robust analysis model in snow peach quality detection based on visible-near infrared spectroscopy.

作者信息

Hao Yong, Li Xiyan, Zhang Chengxiang, Lei Zuxiang

机构信息

School of Mechatronics and Vehicle Engineering, East China Jiaotong University, Nanchang, China.

Key Laboratory of Conveyance Equipment of the Ministry of Education, East China Jiaotong University, Nanchang, China.

出版信息

Front Nutr. 2022 Oct 18;9:1042868. doi: 10.3389/fnut.2022.1042868. eCollection 2022.

Abstract

Visible-near infrared (Vis-NIR) spectra analysis method is widely used in the quality grading of bulk fruits with its rapid, non-destructive, diverse detection modes and flexible modular integration scheme. However, during the online grading of fruits, the random mechanized way of dropping fruit onto the conveyor belt method and the open detection environment led to more spectral abnormal samples, which affect the accuracy of the detection. In this paper, the soluble solids content (SSC) of snow peach is quantitatively analyzed by static and online detection methods. Several spectral preprocessing methods including Norris-Williams Smoothing (NWS), Savitzky-Golay Smoothing (SGS), Continuous Wavelet Derivative (CWD), Multivariate Scattering Correction (MSC), and Variable Sorting for Normalization (VSN) are adopted to eliminate spectral rotation and translation errors and improve the signal-to-noise ratio. Monte Carlo Uninformative Variable Elimination (MCUVE) method is used for the selection of optimal characteristic modeling variables. Partial Least Squares Regression (PLSR) is used to model and analyze the preprocessed spectra and the spectral variables optimized by MCUVE, and the effectiveness of the method is evaluated. Sparse Partial Least Squares Regression (SPLSR) and Sparse Partial Robust M Regression (SPRMR) are used for the construction of robust models. The results showed that the SGS preprocessing method can effectively improve the analysis accuracy of static and online models. The MCUVE method can realize the extraction of stable characteristic variables. The SPRMR model based on SGS preprocessing method and the effective variables has the optimal analysis results. The analysis accuracy of snow peach static model is slightly better than that of online analytical model. Through the test results of the PLSR, SPLSR and SPRMR models by the artificially adding noise test method, it can be seen that the SPRMR method eliminates the influence of abnormal samples on the model during the modeling process, which can effectively improve the anti-noise ability and detection reliability.

摘要

可见-近红外(Vis-NIR)光谱分析方法因其快速、无损、检测模式多样以及灵活的模块化集成方案,在大宗水果品质分级中得到广泛应用。然而,在水果在线分级过程中,水果随机机械地落到传送带上的方式以及开放的检测环境导致出现更多光谱异常样本,影响了检测的准确性。本文采用静态和在线检测方法对雪桃的可溶性固形物含量(SSC)进行定量分析。采用了几种光谱预处理方法,包括诺里斯-威廉姆斯平滑(NWS)、萨维茨基-戈莱平滑(SGS)、连续小波导数(CWD)、多元散射校正(MSC)和变量排序归一化(VSN),以消除光谱的旋转和平移误差,提高信噪比。采用蒙特卡罗无信息变量消除(MCUVE)方法选择最优特征建模变量。使用偏最小二乘回归(PLSR)对预处理后的光谱以及经MCUVE优化的光谱变量进行建模和分析,并评估该方法的有效性。使用稀疏偏最小二乘回归(SPLSR)和稀疏偏稳健M回归(SPRMR)构建稳健模型。结果表明,SGS预处理方法能有效提高静态和在线模型的分析精度。MCUVE方法能实现稳定特征变量的提取。基于SGS预处理方法和有效变量的SPRMR模型具有最优分析结果。雪桃静态模型的分析精度略优于在线分析模型。通过人工添加噪声测试方法对PLSR、SPLSR和SPRMR模型的测试结果可知,SPRMR方法在建模过程中消除了异常样本对模型的影响,能有效提高抗噪声能力和检测可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19b6/9624449/ceeb0fa74947/fnut-09-1042868-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验