Suppr超能文献

基于随机青蛙的多元光谱定标波长间隔选择的有效方法。

An efficient method of wavelength interval selection based on random frog for multivariate spectral calibration.

机构信息

College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China.

出版信息

Spectrochim Acta A Mol Biomol Spectrosc. 2013 Jul;111:31-6. doi: 10.1016/j.saa.2013.03.083. Epub 2013 Mar 28.

Abstract

Wavelength selection is a critical step for producing better prediction performance when applied to spectral data. Considering the fact that the vibrational and rotational spectra have continuous features of spectral bands, we propose a novel method of wavelength interval selection based on random frog, called interval random frog (iRF). To obtain all the possible continuous intervals, spectra are first divided into intervals by moving window of a fix width over the whole spectra. These overlapping intervals are ranked applying random frog coupled with PLS and the optimal ones are chosen. This method has been applied to two near-infrared spectral datasets displaying higher efficiency in wavelength interval selection than others. The source code of iRF can be freely downloaded for academy research at the website: http://code.google.com/p/multivariate-calibration/downloads/list.

摘要

波长选择是将其应用于光谱数据以产生更好的预测性能的关键步骤。考虑到振动和旋转光谱具有光谱带的连续特征,我们提出了一种基于随机青蛙的波长间隔选择的新方法,称为间隔随机青蛙(iRF)。为了获得所有可能的连续间隔,首先通过在整个光谱上移动固定宽度的窗口将光谱划分为间隔。应用随机青蛙与 PLS 相结合对这些重叠间隔进行排序,并选择最佳间隔。该方法已应用于两个近红外光谱数据集,在波长间隔选择方面显示出比其他方法更高的效率。iRF 的源代码可在网站上免费下载,供学术研究使用:http://code.google.com/p/multivariate-calibration/downloads/list。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验