Suppr超能文献

使用参考层自适应滤波(RLAF)在线减少同步脑电图-功能磁共振成像(EEG-fMRI)中脑电图的伪迹

Online Reduction of Artifacts in EEG of Simultaneous EEG-fMRI Using Reference Layer Adaptive Filtering (RLAF).

作者信息

Steyrl David, Krausz Gunther, Koschutnig Karl, Edlinger Günter, Müller-Putz Gernot R

机构信息

Laboratory of Brain-Computer Interfaces, Institute of Neural Engineering, Graz University of Technology, 8010, Graz, Austria.

BioTechMed-Graz, Graz, Austria.

出版信息

Brain Topogr. 2018 Jan;31(1):129-149. doi: 10.1007/s10548-017-0606-7. Epub 2017 Nov 9.

Abstract

Simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) allow us to study the active human brain from two perspectives concurrently. Signal processing based artifact reduction techniques are mandatory for this, however, to obtain reasonable EEG quality in simultaneous EEG-fMRI. Current artifact reduction techniques like average artifact subtraction (AAS), typically become less effective when artifact reduction has to be performed on-the-fly. We thus present and evaluate a new technique to improve EEG quality online. This technique adds up with online AAS and combines a prototype EEG-cap for reference recordings of artifacts, with online adaptive filtering and is named reference layer adaptive filtering (RLAF). We found online AAS + RLAF to be highly effective in improving EEG quality. Online AAS + RLAF outperformed online AAS and did so in particular online in terms of the chosen performance metrics, these being specifically alpha rhythm amplitude ratio between closed and opened eyes (3-45% improvement), signal-to-noise-ratio of visual evoked potentials (VEP) (25-63% improvement), and VEPs variability (16-44% improvement). Further, we found that EEG quality after online AAS + RLAF is occasionally even comparable with the offline variant of AAS at a 3T MRI scanner. In conclusion RLAF is a very effective add-on tool to enable high quality EEG in simultaneous EEG-fMRI experiments, even when online artifact reduction is necessary.

摘要

同步脑电图(EEG)和功能磁共振成像(fMRI)使我们能够同时从两个角度研究活跃的人类大脑。然而,对于在同步EEG-fMRI中获得合理的EEG质量而言,基于信号处理的伪迹减少技术是必不可少的。像平均伪迹减法(AAS)这样的当前伪迹减少技术,通常在必须实时进行伪迹减少时效果会变差。因此,我们提出并评估了一种在线提高EEG质量的新技术。该技术与在线AAS相结合,并将用于伪迹参考记录的原型EEG帽与在线自适应滤波相结合,被称为参考层自适应滤波(RLAF)。我们发现在线AAS + RLAF在提高EEG质量方面非常有效。在线AAS + RLAF的表现优于在线AAS,特别是在所选性能指标方面,具体而言,这些指标包括闭眼和睁眼之间的阿尔法节律幅度比(提高3-45%)、视觉诱发电位(VEP)的信噪比(提高25-63%)以及VEP的变异性(提高16-44%)。此外,我们发现在线AAS + RLAF后的EEG质量偶尔甚至可与3T MRI扫描仪上AAS的离线变体相媲美。总之,RLAF是一种非常有效的附加工具,即使在需要在线减少伪迹的情况下,也能在同步EEG-fMRI实验中实现高质量的EEG。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8827/5772120/356c931240ea/10548_2017_606_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验