Suppr超能文献

超高场下的同时 EEG-fMRI:伪影预防与安全性评估。

Simultaneous EEG-fMRI at ultra-high field: artifact prevention and safety assessment.

机构信息

Institute for Systems and Robotics and Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal; Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

Biomedical Imaging Research Center, Geneva University Hospital, University of Geneva, Geneva, Switzerland.

出版信息

Neuroimage. 2015 Jan 15;105:132-44. doi: 10.1016/j.neuroimage.2014.10.055. Epub 2014 Oct 29.

Abstract

The simultaneous recording of scalp electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) can provide unique insights into the dynamics of human brain function, and the increased functional sensitivity offered by ultra-high field fMRI opens exciting perspectives for the future of this multimodal approach. However, simultaneous recordings are susceptible to various types of artifacts, many of which scale with magnetic field strength and can seriously compromise both EEG and fMRI data quality in recordings above 3T. The aim of the present study was to implement and characterize an optimized setup for simultaneous EEG-fMRI in humans at 7 T. The effects of EEG cable length and geometry for signal transmission between the cap and amplifiers were assessed in a phantom model, with specific attention to noise contributions from the MR scanner coldheads. Cable shortening (down to 12 cm from cap to amplifiers) and bundling effectively reduced environment noise by up to 84% in average power and 91% in inter-channel power variability. Subject safety was assessed and confirmed via numerical simulations of RF power distribution and temperature measurements on a phantom model, building on the limited existing literature at ultra-high field. MRI data degradation effects due to the EEG system were characterized via B0 and B1(+) field mapping on a human volunteer, demonstrating important, although not prohibitive, B1 disruption effects. With the optimized setup, simultaneous EEG-fMRI acquisitions were performed on 5 healthy volunteers undergoing two visual paradigms: an eyes-open/eyes-closed task, and a visual evoked potential (VEP) paradigm using reversing-checkerboard stimulation. EEG data exhibited clear occipital alpha modulation and average VEPs, respectively, with concomitant BOLD signal changes. On a single-trial level, alpha power variations could be observed with relative confidence on all trials; VEP detection was more limited, although statistically significant responses could be detected in more than 50% of trials for every subject. Overall, we conclude that the proposed setup is well suited for simultaneous EEG-fMRI at 7 T.

摘要

头皮脑电图 (EEG) 和功能磁共振成像 (fMRI) 的同步记录可以为人类大脑功能的动态提供独特的见解,而超高场 fMRI 提供的增强功能灵敏度为这种多模态方法的未来开辟了令人兴奋的前景。然而,同步记录容易受到各种类型的伪影的影响,其中许多伪影与磁场强度成正比,并且在 3T 以上的记录中会严重影响 EEG 和 fMRI 数据的质量。本研究的目的是在 7T 下为人类实现和描述用于同步 EEG-fMRI 的优化设置。在体模模型中评估了 EEG 电缆长度和几何形状对帽与放大器之间信号传输的影响,特别注意来自磁共振扫描仪冷头的噪声贡献。通过将电缆缩短(从帽到放大器缩短至 12cm)和捆绑,环境噪声的平均功率可有效降低 84%,通道间功率变化可降低 91%。通过对体模模型进行射频功率分布和温度测量的数值模拟,评估并确认了受试者的安全性,这是在超高场的有限现有文献基础上进行的。通过对志愿者进行 B0 和 B1(+) 场映射,对由于 EEG 系统导致的 MRI 数据降级效应进行了特征描述,结果表明存在重要的、尽管不是不可逾越的 B1 干扰效应。使用优化后的设置,对 5 名健康志愿者进行了两次视觉范式的同步 EEG-fMRI 采集:睁眼/闭眼任务和使用反转棋盘刺激的视觉诱发电位 (VEP) 范式。EEG 数据分别表现出清晰的枕部 alpha 调制和平均 VEP,同时伴有 BOLD 信号变化。在单试次水平上,alpha 功率变化在所有试次上都可以相对有信心地观察到;VEP 检测受到更多限制,尽管在每个被试中超过 50%的试次都可以检测到统计学上显著的反应。总的来说,我们得出结论,所提出的设置非常适合在 7T 下进行同步 EEG-fMRI。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验