1 Biotechnology Lab, Centro de Citricultura Sylvio Moreira. Cordeirópolis-SP, Brazil.
3 Universidade Federal de Campina Grande, Cuité-PB, Brasil.
Mol Plant Microbe Interact. 2018 Mar;31(3):386-398. doi: 10.1094/MPMI-05-17-0112-FI. Epub 2018 Jan 30.
Coevolution has shaped the molecular basis of an extensive number of defense mechanisms in plant-pathogen interactions. Phytophthora parasitica, a hemibiothrophic oomycete pathogen and the causal agent of citrus root rot and gummosis, interacts differently with Citrus sunki and Poncirus trifoliata, two commonly favored citrus rootstocks that are recognized as susceptible and resistant, respectively, to P. parasitica. The molecular core of these interactions remains elusive. Here, we provide evidence on the defense strategies employed by both susceptible and resistant citrus rootstocks, in parallel with P. parasitica deployment of effectors. Time course expression analysis (quantitative real-time polymerase chain reaction) of several defense-related genes were evaluated during i) plant disease development, ii) necrosis, and iii) pathogen effector gene expression. In C. sunki, P. parasitica deploys effectors, including elicitins, NPP1 (necrosis-inducing Phytophthora protein 1), CBEL (cellulose-binding elicitor and lectin activity), RxLR, and CRN (crinkler), and, consequently, this susceptible plant activates its main defense signaling pathways that result in the hypersensitive response and necrosis. Despite the strong plant-defense response, it fails to withstand P. parasitica invasion, confirming its hemibiothrophic lifestyle. In Poncirus trifoliata, the effectors were strongly expressed, nevertheless failing to induce any immunity manipulation and disease development, suggesting a nonhost resistance type, in which the plant relies on preformed biochemical and anatomical barriers.
协同进化塑造了植物-病原体相互作用中大量防御机制的分子基础。寄生疫霉是一种兼性生物营养型卵菌病原体,也是柑橘根腐病和流胶病的致病因子,它与枳橙和温州蜜柑,这两种通常被认为是对寄生疫霉分别敏感和抗性的柑橘砧木,有着不同的相互作用。这些相互作用的分子核心仍然难以捉摸。在这里,我们提供了证据表明,在寄生疫霉效应子的部署过程中,敏感和抗性柑橘砧木都采用了防御策略。在以下三种情况下,对几种与防御相关的基因进行了时间过程表达分析(实时定量聚合酶链反应):i)植物发病发展;ii)坏死;iii)病原体效应子基因表达。在枳橙中,寄生疫霉部署了效应子,包括激发素、NPP1(坏死诱导寄生疫霉蛋白 1)、CBEL(纤维素结合激发素和凝集素活性)、RxLR 和 CRN(皱缩),因此,这种敏感植物激活了其主要的防御信号通路,导致过敏反应和坏死。尽管植物防御反应强烈,但仍无法抵御寄生疫霉的入侵,证实了其兼性生物营养型的生活方式。在温州蜜柑中,效应子表达强烈,但未能诱导任何免疫操纵和疾病发展,这表明是一种非寄主抗性类型,其中植物依赖于预先形成的生化和解剖屏障。