Suppr超能文献

使用任务无关的运动相位特定编码模型进行运动学解码。

Decoding Kinematics Using Task-Independent Movement-Phase-Specific Encoding Models.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2017 Nov;25(11):2122-2132. doi: 10.1109/TNSRE.2017.2709756.

Abstract

Neural decoders of kinematic variables have largely relied on task-dependent (TD) encoding models of the neural activity. TD decoders, though, require prior knowledge of the tasks, which may be unavailable, lack scalability as the number of tasks grows, and require a large number of trials per task to reduce the effects of neuronal variability. The execution of movements involves a sequence of phases (e.g., idle, planning, and so on) whose progression contributes to the neuronal variability. We hypothesize that information about the movement phase facilitates the decoding of kinematics and compensates for the lack of prior knowledge about the task. We test this hypothesis by designing a task-independent movement-phase-specific (TI-MPS) decoding algorithm. The algorithm assumes that movements proceed through a consistent sequence of phases regardless of the specific task, and it builds one model per phase by combining data from different tasks. Phase transitions are detected online from neural data and, for each phase, a specific encoding model is used. The TI-MPS algorithm was tested on single-unit recordings from 437 neurons in the dorsal and ventral pre-motor cortices from two nonhuman primates performing 3-D multi-object reach-to-grasp tasks. The TI-MPS decoder accurately decoded kinematics from tasks it was not trained for and outperformed TD approaches (one-way ANOVA with Tukey's post-hoc test and -value <0.05). Results indicate that a TI paradigm with MPS models may help decoding kinematics when prior information about the task is unavailable and pave the way toward clinically viable prosthetics.

摘要

运动变量的神经解码器在很大程度上依赖于与任务相关(TD)的神经活动编码模型。然而,TD 解码器需要先验知识的任务,这可能是不可用的,缺乏可扩展性,因为任务的数量增加,并且需要大量的试验每个任务来减少神经元变异性的影响。运动的执行涉及到一系列的阶段(例如,空闲、规划等),这些阶段的进展有助于神经元变异性。我们假设关于运动阶段的信息有助于运动学的解码,并补偿任务先验知识的缺乏。我们通过设计一个与任务无关的运动阶段特异性(TI-MPS)解码算法来验证这个假设。该算法假设运动无论特定任务如何,都通过一致的序列阶段进行,并且通过结合来自不同任务的数据为每个阶段构建一个模型。通过从神经数据中在线检测相位转换,并针对每个相位使用特定的编码模型。TI-MPS 算法在来自两个非人类灵长类动物的背侧和腹侧前运动皮层的 437 个神经元的单细胞记录上进行了测试,这些动物执行 3-D 多物体到达抓握任务。TI-MPS 解码器可以准确地从它没有经过训练的任务中解码运动学,并且优于 TD 方法(单向方差分析和 Tukey 事后检验,p 值<0.05)。结果表明,当任务的先验信息不可用时,具有 MPS 模型的 TI 范式可能有助于运动学的解码,并为临床可行的假肢铺平道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验