Suppr超能文献

预测环丙沙星暴露下大肠杆菌竞争实验中的突变体选择。

Predicting mutant selection in competition experiments with ciprofloxacin-exposed Escherichia coli.

机构信息

Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.

Department of Medical Sciences, Uppsala University, Uppsala, Sweden.

出版信息

Int J Antimicrob Agents. 2018 Mar;51(3):399-406. doi: 10.1016/j.ijantimicag.2017.10.019. Epub 2017 Nov 7.

Abstract

Predicting competition between antibiotic-susceptible wild-type (WT) and less susceptible mutant (MT) bacteria is valuable for understanding how drug concentrations influence the emergence of resistance. Pharmacokinetic/pharmacodynamic (PK/PD) models predicting the rate and extent of takeover of resistant bacteria during different antibiotic pressures can thus be a valuable tool in improving treatment regimens. The aim of this study was to evaluate a previously developed mechanism-based PK/PD model for its ability to predict in vitro mixed-population experiments with competition between Escherichia coli (E. coli) WT and three well-defined E. coli resistant MTs when exposed to ciprofloxacin. Model predictions for each bacterial strain and ciprofloxacin concentration were made for in vitro static and dynamic time-kill experiments measuring CFU (colony forming units)/mL up to 24 h with concentrations close to or below the minimum inhibitory concentration (MIC), as well as for serial passage experiments with concentrations well below the MIC measuring ratios between the two strains with flow cytometry. The model was found to reasonably well predict the initial bacterial growth and killing of most static and dynamic time-kill competition experiments without need for parameter re-estimation. With parameter re-estimation of growth rates, an adequate fit was also obtained for the 6-day serial passage competition experiments. No bacterial interaction in growth was observed. This study demonstrates the predictive capacity of a PK/PD model and further supports the application of PK/PD modelling for prediction of bacterial kill in different settings, including resistance selection.

摘要

预测抗生素敏感野生型 (WT) 和耐药突变型 (MT) 细菌之间的竞争对于理解药物浓度如何影响耐药性的出现非常有价值。因此,能够预测在不同抗生素压力下耐药菌接管速度和程度的药代动力学/药效学 (PK/PD) 模型,可以成为改善治疗方案的有价值工具。本研究旨在评估先前开发的基于机制的 PK/PD 模型,以评估其在预测大肠杆菌 (E. coli) WT 和三种明确的大肠杆菌耐药 MT 之间竞争的体外混合群体实验中的能力,当它们暴露于环丙沙星时。为体外静态和动态时间杀伤实验,测量 CFU(菌落形成单位)/mL 至 24 小时,浓度接近或低于最小抑菌浓度 (MIC),以及在低于 MIC 的浓度下进行连续传代实验,使用流式细胞术测量两种菌株之间的比例,为每个细菌菌株和环丙沙星浓度进行了模型预测。结果发现,该模型无需重新估算参数,即可合理地预测大多数静态和动态时间杀伤竞争实验的初始细菌生长和杀伤情况。通过重新估算生长速率的参数,也可以获得 6 天连续传代竞争实验的良好拟合。未观察到细菌在生长方面的相互作用。这项研究证明了 PK/PD 模型的预测能力,并进一步支持将 PK/PD 模型应用于预测不同情况下的细菌杀灭,包括耐药性选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验