Cunha Cássia R A, Andrade Camila G, Pereira Maria I A, Cabral Filho Paulo E, Carvalho Luiz B, Coelho Luana C B B, Santos Beate S, Fontes Adriana, Correia Maria T S
Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, 50670-901 Recife, Brazil; Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-420 Recife, Brazil.
Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, 50670-901 Recife, Brazil; Laboratório de Imunopatologia Keizo Asami, 50740-120 Recife, Pernambuco, Brazil.
J Photochem Photobiol B. 2018 Jan;178:85-91. doi: 10.1016/j.jphotobiol.2017.10.020. Epub 2017 Oct 25.
The optical properties of quantum dots (QDs) make them useful tools for biology, especially when combined with biomolecules such as lectins. QDs conjugated to lectins can be used as nanoprobes for carbohydrate expression analysis, which can provide valuable information about glycosylation changes related to cancer and pathogenicity of microorganisms, for example. In this study, we evaluated the best strategy to conjugate Cramoll lectin to QDs and used the fluorescent labeling of Candida albicans cells as a proof-of-concept. Cramoll is a mannose/glucose-binding lectin with unique biological properties such as immunomodulatory, antiparasitic, and antitumor activities. We probed covalent coupling and adsorption as conjugation strategies at different pH values. QDs conjugated to Cramoll at pH7.0 showed the best labeling efficiency in the fluorescence microscopy analysis. Moreover, QD-Cramoll conjugates remained brightly fluorescent and preserved identical biological activity according to hemagglutination assays. Flow cytometry revealed that approximately 17% of C. albicans cells were labeled after incubation with covalent conjugates, while approximately 92% of cells were labeled by adsorption conjugates (both at pH7.0). Inhibition assays confirmed QD-Cramoll specificity, which reduced the labeling to at most 3%. Therefore, the conjugates obtained by adsorption (pH7.0) proved to be promising and versatile fluorescent tools for glycobiology.
量子点(QD)的光学特性使其成为生物学领域的有用工具,尤其是与凝集素等生物分子结合时。与凝集素偶联的量子点可作为用于碳水化合物表达分析的纳米探针,例如,这可以提供有关与癌症和微生物致病性相关的糖基化变化的有价值信息。在本研究中,我们评估了将克拉莫尔凝集素与量子点偶联的最佳策略,并将白色念珠菌细胞的荧光标记作为概念验证。克拉莫尔是一种甘露糖/葡萄糖结合凝集素,具有独特的生物学特性,如免疫调节、抗寄生虫和抗肿瘤活性。我们探究了在不同pH值下作为偶联策略的共价偶联和吸附作用。在pH7.0条件下与克拉莫尔偶联的量子点在荧光显微镜分析中显示出最佳的标记效率。此外,根据血凝试验,量子点-克拉莫尔偶联物保持明亮的荧光并保留相同的生物活性。流式细胞术显示,与共价偶联物孵育后,约17%的白色念珠菌细胞被标记,而约92%的细胞被吸附偶联物标记(均在pH7.0条件下)。抑制试验证实了量子点-克拉莫尔的特异性,其将标记率降低至最多3%。因此,通过吸附(pH7.0)获得的偶联物被证明是用于糖生物学的有前景且通用的荧光工具。