GET (Geosciences and Environment Toulouse) UMR 5563 CNRS, University Paul Sabatier, 14 Avenue Edouard Belin, 31400 Toulouse, France; Geological Faculty, Moscow State University, 1 Leninskie Gory, 119234 Moscow, Russia.
GET (Geosciences and Environment Toulouse) UMR 5563 CNRS, University Paul Sabatier, 14 Avenue Edouard Belin, 31400 Toulouse, France; N. Laverov Federal Center for Integrated Arctic Research; IEPS, Russian Academy of Science, 23 Nab. Severnoi Dviny, 163000 Arkhangelsk, Russia.
Sci Total Environ. 2018 Mar 15;618:174-187. doi: 10.1016/j.scitotenv.2017.10.340. Epub 2017 Nov 9.
The heterotrophic mineralization of dissolved organic matter (DOM) controls the CO flux from the inland waters to the atmosphere, especially in the boreal waters, although the mechanisms of this process and the fate of trace metals associated with DOM remain poorly understood. We studied the interaction of culturable aquatic (Pseudomonas saponiphila) and soil (Pseudomonas aureofaciens) Gammaproteobacteria with seven different organic substrates collected in subarctic settings. These included peat leachate, pine crown throughfall, fen, humic lake, stream, river, and oligotrophic lake with variable dissolved organic carbon (DOC) concentrations (from 4 to 60mgL). The highest removal of DOC over 4days of reaction was observed in the presence of P. aureofaciens (33±5%, 43±3% and 53±7% of the initial amount in fen water, humic lake and stream, respectively). P. saponiphila degraded only 5% of DOC in fen water but did not affect all other substrates. Trace elements (TE) were essentially controlled by short-term (0-1h) adsorption on the surface of cells. Regardless of the nature of organic substrate and the identity of bacteria, the degree of adsorption ranged from 20 to 60% for iron (Fe), 15 to 55% for aluminum (Al), 10 to 60% for manganese (Mn), 10 to 70% for nickel (Ni), 20 to 70% for copper (Cu), 10 to 60% for yttrium (Y), 30 to 80% for rare earth elements (REE), and 15 to 50% for uranium (U). Rapid adsorption of organic and organo-mineral colloids on bacterial cell surfaces is novel and potentially important process, which deserves special investigation. The long-term removal of dissolved Fe and Al was generally consistent with solution supersaturation degree with respect to Fe and Al hydroxides, calculated by visual Minteq model. Overall, the biomass-normalized biodegradability of various allochthonous substrates by culturable bacteria is much lower than that of boreal DOM by natural microbial consortia.
溶解有机质(DOM)的异养矿化控制着内陆水体向大气输送的 CO 通量,这在北方水域尤为明显,尽管这一过程的机制以及与 DOM 相关的痕量金属的归宿仍知之甚少。我们研究了可培养的水生(假单胞菌 saponiphila)和土壤(假单胞菌 aureofaciens)γ-变形菌与在亚北极地区采集的七种不同有机基质之间的相互作用。这些有机基质包括泥炭浸提液、松冠穿透水、沼泽、腐殖质湖、溪流、河流和贫营养湖泊,其溶解有机碳(DOC)浓度不同(4 至 60mg/L)。在 4 天的反应过程中,观察到 P. aureofaciens 存在时对 DOM 的去除率最高(沼泽水、腐殖质湖和溪流中的初始 DOM 分别减少了 33±5%、43±3%和 53±7%)。P. saponiphila 仅能降解 5%的沼泽水 DOC,但对其他所有基质均无影响。痕量元素(TE)主要通过细胞表面的短期(0-1h)吸附来控制。无论有机基质的性质和细菌的身份如何,铁(Fe)的吸附程度在 20%至 60%之间,铝(Al)的吸附程度在 15%至 55%之间,锰(Mn)的吸附程度在 10%至 60%之间,镍(Ni)的吸附程度在 10%至 70%之间,铜(Cu)的吸附程度在 20%至 70%之间,钇(Y)的吸附程度在 10%至 60%之间,稀土元素(REE)的吸附程度在 30%至 80%之间,铀(U)的吸附程度在 15%至 50%之间。有机和有机-矿物胶体在细菌细胞表面的快速吸附是一种新颖且潜在重要的过程,值得特别研究。通过视觉 Minteq 模型计算得出,可培养细菌对各种异源基质的溶解态 Fe 和 Al 的长期去除通常与 Fe 和 Al 氢氧化物的过饱和度一致。总的来说,可培养细菌对各种异源基质的生物降解性远低于自然微生物群落对北方 DOM 的生物降解性。