Institute of Ecological Problems of the North, Ural Branch of Russian Academy of Science, Naberezhnaya Severnoi Dviny, 23, Arkhangelsk, 163000, Russia; GET UMR 5563 CNRS, Université de Toulouse, 14 Avenue Edouard Belin, 31400 Toulouse, France.
Sci Total Environ. 2013 Oct 1;463-464:78-90. doi: 10.1016/j.scitotenv.2013.05.088. Epub 2013 Jun 20.
The colloidal distribution and size fractionation of organic carbon (OC), major elements and trace elements (TE) were studied in a seasonally stratified, organic-rich boreal lake, Lake Svyatoe, located in the European subarctic zone (NW Russia, Arkhangelsk region). This study took place over the course of 4 years in both winter and summer periods using an in situ dialysis technique (1 kDa, 10 kDa and 50 kDa) and traditional frontal filtration and ultrafiltration (5, 0.22 and 0.025 μm). We observed a systematic difference in dissolved elements and colloidal fractions between summer and winter periods with the highest proportion of organic and organo-ferric colloids (1 kDa-0.22 μm) observed during winter periods. The anomalously hot summer of 2010 in European Russia produced surface water temperatures of approximately 30°C, which were 10° above the usual summer temperatures and brought about crucial changes in element speciation and size fractionation. In August 2010, the concentration of dissolved organic carbon (DOC) decreased by more than 30% compared to normal period, while the relative proportion of organic colloids decreased from 70-80% to only 20-30% over the full depth of the water column. Similarly, the proportion of colloidal Fe decreased from 90-98% in most summers and winters to approximately 60-70% in August 2010. During this hot summer, measurable and significant (>30% compared to other periods) decreases in the colloidal fractions of Ca, Mg, Sr, Ba, Al, Ti, Ni, As, V, Co, Y, all rare earth elements (REEs), Zr, Hf, Th and U were also observed. In addition, dissolved (<0.22 μm) TE concentrations decreased by a factor of 2 to 6 compared to previously investigated periods. The three processes most likely responsible for such a crucial change in element biogeochemistry with elevated water temperature are 1) massive phytoplankton bloom, 2) enhanced mineralization (respiration) of allochthonous dissolved organic matter by heterotrophic aerobic bacterioplankton and 3) photo-degradation of DOM and photo-chemical liberation of organic-bound TE. While the first process may have caused significant decreases in the total dissolved concentration of micronutrients (a factor of 2 to 5 for Cr, Mn, Fe, Ni, Cu, Zn and Cd and a factor of >100 for Co), the second and third factors could have brought about the decrease of allochthonous DOC concentration as well as the concentration and proportion of organic and organo-mineral colloidal forms of non-essential low-soluble trace elements present in the form of organic colloids (Al, Y, Ti, Zr, Hf, Th, Pb, all REEs). It can be hypothesized that climate warming in high latitudes capable of significantly raising surface water temperatures will produce a decrease in the colloidal fraction of most trace elements and, as a result, an increase in the most labile low molecular weight LMW(<1 kDa) fraction.
本研究在北欧(俄罗斯阿尔汉格尔斯克地区)的亚北极区的季节性分层富营养湖泊斯维亚托耶湖(Lake Svyatoe)中,使用原位透析技术(1 kDa、10 kDa 和 50 kDa)和传统的前沿过滤和超滤(5、0.22 和 0.025 μm),研究了有机碳(OC)、主要元素和痕量元素(TE)的胶体分布和粒径分级。这项研究在 4 年的时间里,在冬季和夏季进行,使用了原位透析技术(1 kDa、10 kDa 和 50 kDa)和传统的前沿过滤和超滤(5、0.22 和 0.025 μm)。我们观察到溶解元素和胶体分数之间存在季节性差异,冬季期间观察到有机和有机铁胶体(1 kDa-0.22 μm)的比例最高。2010 年俄罗斯欧洲异常炎热的夏季,使地表水温达到约 30°C,比夏季正常温度高 10°C,导致元素形态和粒径分级发生了重要变化。2010 年 8 月,与正常时期相比,溶解有机碳(DOC)的浓度下降了 30%以上,而有机胶体的相对比例从夏季和冬季的 70-80%降至整个水柱的 20-30%。同样,胶体 Fe 的比例从大多数夏季和冬季的 90-98%降至 2010 年 8 月的约 60-70%。在这个炎热的夏季,还观察到 Ca、Mg、Sr、Ba、Al、Ti、Ni、As、V、Co、Y、所有稀土元素(REEs)、Zr、Hf、Th 和 U 的胶体分数发生了显著变化(与其他时期相比,变化幅度超过 30%)。此外,与之前调查的时期相比,溶解(<0.22 μm)TE 浓度下降了 2 到 6 倍。造成这种元素生物地球化学发生重大变化的三个主要过程是 1)大规模浮游植物繁殖,2)异养需氧细菌对所有外源溶解有机物的矿化(呼吸)增强,3)DOM 的光降解和有机结合 TE 的光化学释放。尽管第一个过程可能导致微量元素总溶解浓度显著下降(Cr、Mn、Fe、Ni、Cu、Zn 和 Cd 下降 2 到 5 倍,Co 下降 >100 倍),但第二个和第三个因素可能导致外源 DOC 浓度以及以有机胶体形式存在的非必需低溶解度痕量元素的有机和有机-矿物胶体形式的浓度和比例下降(Al、Y、Ti、Zr、Hf、Th、Pb、所有 REEs)。可以假设,高纬度地区的气候变暖能够显著提高地表水温,这将导致大多数痕量元素的胶体分数下降,以及最不稳定的低分子量 LMW(<1 kDa)分数增加。