Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA.
Department of Ecology and Evolutionary Biology, University of Connecticut, 75 N Eagleville Road Unit 3043, Storrs, CT 06269, USA.
Curr Biol. 2017 Nov 20;27(22):3568-3575.e3. doi: 10.1016/j.cub.2017.10.008. Epub 2017 Nov 9.
When a free-living bacterium transitions to a host-beneficial endosymbiotic lifestyle, it almost invariably loses a large fraction of its genome [1, 2]. The resulting small genomes often become stable in size, structure, and coding capacity [3-5], as exemplified by Sulcia muelleri, a nutritional endosymbiont of cicadas. Sulcia's partner endosymbiont, Hodgkinia cicadicola, similarly remains co-linear in some cicadas diverged by millions of years [6, 7]. But in the long-lived periodical cicada Magicicada tredecim, the Hodgkinia genome has split into dozens of tiny, gene-sparse circles that sometimes reside in distinct Hodgkinia cells [8]. Previous data suggested that all other Magicicada species harbor complex Hodgkinia populations, but the timing, number of origins, and outcomes of the splitting process were unknown. Here, by sequencing Hodgkinia metagenomes from the remaining six Magicicada and two sister species, we show that each Magicicada species harbors Hodgkinia populations of at least 20 genomic circles. We find little synteny among the 256 Hodgkinia circles analyzed except between the most closely related cicada species. Gene phylogenies show multiple Hodgkinia lineages in the common ancestor of Magicicada and its closest known relatives but that most splitting has occurred within Magicicada and has given rise to highly variable Hodgkinia gene dosages among species. These data show that Hodgkinia genome degradation has proceeded down different paths in different Magicicada species and support a model of genomic degradation that is stochastic in outcome and nonadaptive for the host. These patterns mirror the genomic instability seen in some mitochondria.
当自由生活的细菌转变为对宿主有益的内共生生活方式时,它几乎总是会失去其基因组的很大一部分[1,2]。由此产生的小基因组通常在大小、结构和编码能力上变得稳定[3-5],以蝉的营养内共生菌 Sulcia muelleri 为例。Sulcia 的共生内共生菌 Hodgkinia cicadicola 在一些已经分化了数百万年的蝉中仍然保持着共线性[6,7]。但是在寿命较长的周期性蝉 Magicicada tredecim 中, Hodgkinia 基因组已经分裂成几十个微小的、基因稀疏的圆圈,这些圆圈有时存在于不同的 Hodgkinia 细胞中[8]。以前的数据表明,所有其他 Magicicada 物种都含有复杂的 Hodgkinia 种群,但分裂过程的时间、起源数量和结果尚不清楚。在这里,通过对剩余的六种 Magicicada 和两种姐妹种的 Hodgkinia 宏基因组进行测序,我们表明每个 Magicicada 物种都至少含有 20 个基因组环的 Hodgkinia 种群。除了最密切相关的蝉种之间外,我们在分析的 256 个 Hodgkinia 循环中几乎没有发现同基因序列。基因系统发育表明,在 Magicicada 和其最接近的已知亲缘关系的共同祖先中存在多个 Hodgkinia 谱系,但大多数分裂都发生在 Magicicada 内部,并导致了物种间 Hodgkinia 基因剂量的高度变化。这些数据表明, Hodgkinia 基因组退化在不同的 Magicicada 物种中走了不同的道路,并支持了一种结果随机且对宿主无适应性的基因组退化模型。这些模式与一些线粒体中看到的基因组不稳定性相呼应。