Chen Xing, Mietlicki-Baase Elizabeth G, Barrett Taylor M, McGrath Lauren E, Koch-Laskowski Kieran, Ferrie John J, Hayes Matthew R, Petersson E James
Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States.
Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania , 125 South 31st Street, Philadelphia, Pennsylvania 19104, United States.
J Am Chem Soc. 2017 Nov 22;139(46):16688-16695. doi: 10.1021/jacs.7b08417. Epub 2017 Nov 13.
Peptide hormones are attractive as injectable therapeutics and imaging agents, but they often require extensive modification by mutagenesis and/or chemical synthesis to prevent rapid in vivo degradation. Alternatively, the single-atom, O-to-S modification of peptide backbone thioamidation has the potential to selectively perturb interactions with proteases while preserving interactions with other proteins, such as target receptors. Here, we use the validated diabetes therapeutic, glucagon-like peptide-1 (GLP-1), and the target of clinical investigation, gastric inhibitory polypeptide (GIP), as proof-of-principle peptides to demonstrate the value of thioamide substitution. In GLP-1 and GIP, a single thioamide near the scissile bond renders these peptides up to 750-fold more stable than the corresponding oxopeptides toward cleavage by dipeptidyl peptidase 4, the principal regulator of their in vivo stability. These stabilized analogues are nearly equipotent with their parent peptide in cyclic AMP activation assays, but the GLP-1 thiopeptides have much lower β-arrestin potency, making them novel agonists with altered signaling bias. Initial tests show that a thioamide GLP-1 analogue is biologically active in rats, with an in vivo potency for glycemic control surpassing that of native GLP-1. Taken together, these experiments demonstrate the potential for thioamides to modulate specific protein interactions to increase proteolytic stability or tune activation of different signaling pathways.
肽类激素作为注射用治疗药物和成像剂具有吸引力,但它们通常需要通过诱变和/或化学合成进行广泛修饰,以防止在体内快速降解。另外,肽主链硫代酰胺化的单原子氧到硫修饰有可能在保留与其他蛋白质(如靶受体)相互作用的同时,选择性地干扰与蛋白酶的相互作用。在这里,我们使用经过验证的糖尿病治疗药物胰高血糖素样肽-1(GLP-1)和临床研究靶点胃抑制多肽(GIP)作为原理验证肽,以证明硫代酰胺取代的价值。在GLP-1和GIP中,靠近可裂解键的单个硫代酰胺使这些肽对二肽基肽酶4的切割稳定性比相应的氧肽高750倍,二肽基肽酶4是它们体内稳定性的主要调节因子。这些稳定的类似物在环磷酸腺苷激活试验中与其亲本肽几乎具有同等效力,但GLP-1硫肽的β-抑制蛋白效力要低得多,使其成为具有改变信号偏向的新型激动剂。初步测试表明,一种硫代酰胺GLP-1类似物在大鼠体内具有生物活性,其体内血糖控制效力超过天然GLP-1。综上所述,这些实验证明了硫代酰胺调节特定蛋白质相互作用以提高蛋白水解稳定性或调节不同信号通路激活潜能。