Suppr超能文献

图像分析是一种用于量化 Ki-67 以预测胃肠道间质瘤患者预后的优秀工具。

Image analysis is an excellent tool for quantifying Ki-67 to predict the prognosis of gastrointestinal stromal tumor patients.

机构信息

Department of Surgial Pathology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan.

Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan.

出版信息

Pathol Int. 2018 Jan;68(1):7-11. doi: 10.1111/pin.12611. Epub 2017 Nov 13.

Abstract

We investigated the quantification of Ki-67 staining using digital image analysis (IA) as a complementary prognostic factor to the modified National Institutes of Health (NIH) classification in patients with gastrointestinal stromal tumor (GIST). We examined 92 patients, focusing on the correlation between age, sex, primary tumor site, tumor size, predominant histologic type, mitotic index, modified NIH classification (low/intermediate vs high), Ki-67 quantitation, and recurrence-free survival (RFS). We compared two IA processes for whole slide imaging (WSI) and manually captured image (MCI) methods. A Ki-67 quantitation cutoff was determined by receiver operator characteristics curve analysis. In the survival analysis, the high-risk group of a modified NIH classification, a mitotic count >5 per 20 high-powered fields, and Ki-67 cutoffs of ≥6% and ≥8% obtained by IA of the WSI and MCI methods, respectively, had an adverse impact on RFS. On multivariate analysis, each Ki-67 quantitation method strongly predicted prognosis, more strongly than the modified NIH classification. In addition, Ki-67 quantitation using IA of the MCI method could stratify low or intermediate risk and high risk GIST patients. Thus, IA is an excellent tool for quantifying Ki-67 to predict the prognosis of GIST patients, and this semiautomated approach may be preferable for patient care.

摘要

我们研究了使用数字图像分析 (IA) 对胃肠道间质瘤 (GIST) 患者的 Ki-67 染色进行定量分析作为改良 NIH 分类的补充预后因素。我们检查了 92 名患者,重点关注年龄、性别、原发肿瘤部位、肿瘤大小、主要组织学类型、有丝分裂指数、改良 NIH 分类(低/中 vs 高)、Ki-67 定量和无复发生存率 (RFS) 之间的相关性。我们比较了全切片成像 (WSI) 和手动捕获图像 (MCI) 两种 IA 方法。通过接受者操作特征曲线分析确定 Ki-67 定量截止值。在生存分析中,改良 NIH 分类的高危组、每 20 个高倍视野中有丝分裂计数>5 个以及通过 WSI 和 MCI 方法的 IA 分别获得的 Ki-67 截止值≥6%和≥8%,对 RFS 有不利影响。在多变量分析中,每种 Ki-67 定量方法均强烈预测预后,比改良 NIH 分类更强烈。此外,使用 MCI 方法的 IA 对 Ki-67 进行定量可以对低风险或中风险 GIST 患者和高风险 GIST 患者进行分层。因此,IA 是一种用于定量 Ki-67 以预测 GIST 患者预后的出色工具,这种半自动方法可能更适合患者护理。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验