Center for Bioinformatics and Molecular Simulation, Universidad de Talca , 2 Norte 685, Talca 3460000, Chile.
Institute of Computational Comparative Medicine, Nanotechnology Innovation Center of Kansas State, Kansas State University , Manhattan, Kansas 66506, United States.
J Chem Inf Model. 2017 Dec 26;57(12):3043-3055. doi: 10.1021/acs.jcim.7b00521. Epub 2017 Dec 4.
Several apical iodide translocation pathways have been proposed for iodide efflux out of thyroid follicular cells, including a pathway mediated by the sodium-coupled monocarboxylate transporter 1 (SMCT1), which remains controversial. Herein, we evaluate structural and functional similarities between SMCT1 and the well-studied sodium-iodide symporter (NIS) that mediates the first step of iodide entry into the thyroid. Free-energy calculations using a force field with electronic polarizability verify the presence of a conserved iodide-binding pocket between the TM2, TM3, and TM7 segments in hNIS, where iodide is coordinated by Phe67, Gln72, Cys91, and Gln94. We demonstrate the mutation of residue Gly93 of hNIS to a larger amino acid expels the side chain of a critical tryptophan residue (Trp255) into the interior of the binding pocket, partially occluding the iodide binding site and reducing iodide affinity, which is consistent with previous reports associating mutation of this residue with iodide uptake deficiency and hypothyroidism. Furthermore, we find that the position of Trp255 in this hNIS mutant mirrors that of Trp253 in wild-type hSMCT1, where a threonine (Thr91) occupies the position homologous to that occupied by glycine in wild-type hNIS (Gly93). Correspondingly, mutation of Thr91 to glycine in hSMCT1 makes the pocket structure more like that of wild-type hNIS, increasing its iodide affinity. These results suggest that wild-type hSMCT1 in the inward-facing conformation may bind iodide only very weakly, which may have implications for its ability to transport iodide.
已经提出了几种甲状腺滤泡细胞中碘离子外流的顶端碘转运途径,包括一种由钠离子偶联单羧酸转运蛋白 1(SMCT1)介导的途径,该途径仍存在争议。在此,我们评估了 SMCT1 与研究充分的钠-碘转运体(NIS)之间的结构和功能相似性,后者介导碘进入甲状腺的第一步。使用具有电子极化率的力场进行的自由能计算验证了 hNIS 的 TM2、TM3 和 TM7 片段之间存在保守的碘结合口袋,其中碘由 Phe67、Gln72、Cys91 和 Gln94 配位。我们证明了 hNIS 中残基 Gly93 突变为较大的氨基酸会将关键色氨酸残基(Trp255)的侧链逐出结合口袋的内部,部分阻塞碘结合位点并降低碘亲和力,这与先前将该残基突变与碘摄取缺陷和甲状腺功能减退相关联的报道一致。此外,我们发现这种 hNIS 突变体中的 Trp255 位置与野生型 hSMCT1 中的 Trp253 位置相同,其中苏氨酸(Thr91)占据与野生型 hNIS 中甘氨酸(Gly93)相同的位置。相应地,在 hSMCT1 中将 Thr91 突变为甘氨酸会使口袋结构更像野生型 hNIS,从而增加其碘亲和力。这些结果表明,内向构象中的野生型 hSMCT1 可能只能非常弱地结合碘,这可能对其转运碘的能力有影响。