Institute for Integrative Nanosciences, IFW Dresden , Helmholtzstraße 20, 01069 Dresden, Germany.
Institut für Festkörperphysik, Leibniz Universität Hannover , Appelstraße 2, 30167 Hannover, Germany.
Nano Lett. 2017 Dec 13;17(12):7864-7868. doi: 10.1021/acs.nanolett.7b04138. Epub 2017 Nov 15.
Coercive fields of piezoelectric materials can be strongly influenced by environmental temperature. We investigate this influence using a heterostructure consisting of a single crystal piezoelectric film and a quantum dots containing membrane. Applying electric field leads to a physical deformation of the piezoelectric film, thereby inducing strain in the quantum dots and thus modifying their optical properties. The wavelength of the quantum dot emission shows butterfly-like loops, from which the coercive fields are directly derived. The results suggest that coercive fields at cryogenic temperatures are strongly increased, yielding values several tens of times larger than those at room temperature. We adapt a theoretical model to fit the measured data with very high agreement. Our work provides an efficient framework for predicting the properties of ferroelectric materials and advocating their practical applications, especially at low temperatures.
压电材料的强制场会受到环境温度的强烈影响。我们使用由单晶压电薄膜和量子点膜组成的异质结构来研究这种影响。施加电场会导致压电薄膜的物理变形,从而在量子点中产生应变,从而改变它们的光学性质。量子点发射的波长显示出蝴蝶状的循环,从中可以直接得出强制场。结果表明,低温下的强制场大大增加,其值比室温下大几十倍。我们采用了一个理论模型来拟合测量数据,得到了非常高的一致性。我们的工作为预测铁电材料的性能提供了一个有效的框架,并提倡在低温下,特别是在低温下,将其实际应用。