Suppr超能文献

协变量调整后的Spearman等级相关性与概率尺度残差。

Covariate-adjusted Spearman's rank correlation with probability-scale residuals.

作者信息

Liu Qi, Li Chun, Wanga Valentine, Shepherd Bryan E

机构信息

Merck, Rahway, New Jersey, U.S.A.

Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, U.S.A.

出版信息

Biometrics. 2018 Jun;74(2):595-605. doi: 10.1111/biom.12812. Epub 2017 Nov 13.

Abstract

It is desirable to adjust Spearman's rank correlation for covariates, yet existing approaches have limitations. For example, the traditionally defined partial Spearman's correlation does not have a sensible population parameter, and the conditional Spearman's correlation defined with copulas cannot be easily generalized to discrete variables. We define population parameters for both partial and conditional Spearman's correlation through concordance-discordance probabilities. The definitions are natural extensions of Spearman's rank correlation in the presence of covariates and are general for any orderable random variables. We show that they can be neatly expressed using probability-scale residuals (PSRs). This connection allows us to derive simple estimators. Our partial estimator for Spearman's correlation between X and Y adjusted for Z is the correlation of PSRs from models of X on Z and of Y on Z, which is analogous to the partial Pearson's correlation derived as the correlation of observed-minus-expected residuals. Our conditional estimator is the conditional correlation of PSRs. We describe estimation and inference, and highlight the use of semiparametric cumulative probability models, which allow preservation of the rank-based nature of Spearman's correlation. We conduct simulations to evaluate the performance of our estimators and compare them with other popular measures of association, demonstrating their robustness and efficiency. We illustrate our method in two applications, a biomarker study and a large survey.

摘要

调整斯皮尔曼等级相关以考虑协变量是很有必要的,但现有方法存在局限性。例如,传统定义的偏斯皮尔曼相关没有合理的总体参数,并且用copulas定义的条件斯皮尔曼相关不易推广到离散变量。我们通过一致性 - 不一致性概率为偏斯皮尔曼相关和条件斯皮尔曼相关定义总体参数。这些定义是存在协变量时斯皮尔曼等级相关的自然扩展,并且对任何可排序的随机变量都是通用的。我们表明它们可以用概率尺度残差(PSR)简洁地表示。这种联系使我们能够推导出简单的估计量。我们针对Z调整后的X与Y之间的斯皮尔曼相关的偏估计量是X关于Z的模型和Y关于Z的模型的PSR的相关性,这类似于作为观测值减去期望值残差的相关性得出的偏皮尔逊相关。我们的条件估计量是PSR的条件相关性。我们描述了估计和推断,并强调了半参数累积概率模型的使用,它能保留斯皮尔曼相关基于等级的性质。我们进行模拟以评估我们估计量的性能,并将它们与其他流行的关联度量进行比较,证明了它们的稳健性和效率。我们在两个应用中展示了我们的方法,一个生物标志物研究和一个大型调查。

相似文献

引用本文的文献

本文引用的文献

1
Modeling continuous response variables using ordinal regression.使用有序回归对连续响应变量进行建模。
Stat Med. 2017 Nov 30;36(27):4316-4335. doi: 10.1002/sim.7433. Epub 2017 Sep 5.
5
A new residual for ordinal outcomes.一种用于有序结局的新残差。
Biometrika. 2012 Jun;99(2):473-480. doi: 10.1093/biomet/asr073. Epub 2012 Mar 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验