Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee.
Department of Preventive Medicine, University of Southern California, Los Angeles, California.
Biometrics. 2022 Jun;78(2):421-434. doi: 10.1111/biom.13453. Epub 2021 Mar 23.
We study rank-based approaches to estimate the correlation between two right-censored variables. With end-of-study censoring, it is often impossible to nonparametrically identify the complete bivariate survival distribution, and therefore it is impossible to nonparametrically compute Spearman's rank correlation. As a solution, we propose two measures that can be nonparametrically estimated. The first measure is Spearman's correlation in a restricted region. The second measure is Spearman's correlation for an altered but estimable joint distribution. We describe population parameters for these measures and illustrate how they are similar to and different from the overall Spearman's correlation. We propose consistent estimators of these measures and study their performance through simulations. We illustrate our methods with a study assessing the correlation between the time to viral failure and the time to regimen change among persons living with HIV in Latin America who start antiretroviral therapy.
我们研究了基于秩的方法来估计两个右删失变量之间的相关性。在研究结束时删失的情况下,通常不可能对完整的双变量生存分布进行非参数识别,因此也不可能对斯皮尔曼秩相关系数进行非参数计算。作为一种解决方案,我们提出了两种可以进行非参数估计的度量方法。第一种度量方法是受限区域的斯皮尔曼相关性。第二种度量方法是可估计的联合分布的斯皮尔曼相关性。我们描述了这些度量方法的总体参数,并说明了它们与总体斯皮尔曼相关性的相似之处和不同之处。我们提出了这些度量方法的一致估计量,并通过模拟研究了它们的性能。我们通过一项评估拉丁美洲艾滋病毒感染者开始抗逆转录病毒治疗后病毒失败时间与方案改变时间之间相关性的研究来说明我们的方法。