Suppr超能文献

通过 iCVD 涂层碳纳米管实现纳米多孔微观结构的稳定润湿性控制。

Stable Wettability Control of Nanoporous Microstructures by iCVD Coating of Carbon Nanotubes.

机构信息

Department of Mechanical, Industrial and Manufacturing Engineering (MIME), The University of Toledo , 4006 Nitschke Hall, Toledo, Ohio 43606, United States.

Department of Mechanical Engineering, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.

出版信息

ACS Appl Mater Interfaces. 2017 Dec 13;9(49):43287-43299. doi: 10.1021/acsami.7b13713. Epub 2017 Dec 4.

Abstract

Scalable manufacturing of structured materials with engineered nanoporosity is critical for applications in energy storage devices (i.e., batteries and supercapacitors) and in the wettability control of surfaces (i.e., superhydrophobic and superomniphobic surfaces). Patterns formed in arrays of vertically aligned carbon nanotubes (VA-CNTs) have been extensively studied for these applications. However, the as-deposited features are often undesirably altered upon liquid infiltration and evaporation because of capillarity-driven aggregation of low density CNT forests. Here, it is shown that an ultrathin, conformal, and low-surface-energy layer of poly perfluorodecyl acrylate, poly(1H,1H,2H,2H-perfluorodecyl acrylate) (pPFDA), makes the VA-CNTs robust against surface-tension-driven aggregation and densification. This single vapor-deposition step allows the fidelity of the as-deposited VA-CNT patterns to be retained during wet processing, such as inking, and subsequent drying. It is demonstrated how to establish omniphobicity or liquid infiltration by controlling the surface morphology. Retaining a crust of entangled CNTs and pPFDA aggregates on top of the patterned VA-CNTs produces micropillars with re-entrant features that prevent the infiltration of low-surface-tension liquids and thus gives rise to stable omniphobicity. Plasma treatments before and after polymer deposition remove the crust of entangled CNTs and pPFDA aggregates and attach hydroxyl groups to the CNT tips, enabling liquid infiltration yet preventing densification of the highly porous CNTs. The latter observation demonstrates the protective character of the pPFDA coating with the potential application of these surfaces for direct contact printing of microelectronic features.

摘要

具有工程纳米多孔结构的结构化材料的可扩展制造对于储能设备(例如电池和超级电容器)以及表面润湿性控制(例如超疏水和超双疏表面)的应用至关重要。已经广泛研究了垂直排列碳纳米管(VA-CNTs)阵列中形成的图案在这些应用中的用途。然而,由于低密度 CNT 森林的毛细作用驱动聚集,在液体渗透和蒸发时,沉积后的特征往往会发生不理想的变化。在这里,研究表明,聚全氟癸基丙烯酸酯(poly(1H,1H,2H,2H-perfluorodecyl acrylate))的超薄、共形和低表面能层,使 VA-CNTs 能够抵抗表面张力驱动的聚集和致密化。这单个气相沉积步骤可确保在湿处理(例如喷墨和随后的干燥)过程中保留沉积后的 VA-CNT 图案的保真度。通过控制表面形态,展示了如何建立超双疏性或液体渗透。在图案化的 VA-CNTs 顶部保留纠缠 CNT 和 pPFDA 聚集体的外壳,可产生具有倒凹特征的微柱,防止低表面张力液体的渗透,从而产生稳定的超双疏性。聚合物沉积前后的等离子体处理可去除纠缠的 CNT 和 pPFDA 聚集体的外壳,并将羟基基团附着到 CNT 尖端,从而允许液体渗透,同时防止高度多孔的 CNT 致密化。后一种观察结果证明了 pPFDA 涂层的保护特性,这些表面有可能用于微电子特征的直接接触印刷。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验