Suppr超能文献

阳极极化对希瓦氏菌/石墨毡微生物燃料电池中生物膜形成和电子转移的影响。

Effect of anode polarization on biofilm formation and electron transfer in Shewanella oneidensis/graphite felt microbial fuel cells.

作者信息

Pinto David, Coradin Thibaud, Laberty-Robert Christel

机构信息

Sorbonne Universités, UPMC Univ. Paris 06, CNRS-UMR 7574, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, 4 place Jussieu, 75005 Paris, France.

Sorbonne Universités, UPMC Univ. Paris 06, CNRS-UMR 7574, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, 4 place Jussieu, 75005 Paris, France.

出版信息

Bioelectrochemistry. 2018 Apr;120:1-9. doi: 10.1016/j.bioelechem.2017.10.008. Epub 2017 Oct 31.

Abstract

In microbial fuel cells, electricity generation is assumed by bacterial degradation of low-grade organics generating electrons that are transferred to an electrode. The nature and efficiency of the electron transfer from the bacteria to the electrodes are determined by several chemical, physical and biological parameters. Specifically, the application of a specific potential at the bioanode has been shown to stimulate the formation of an electro-active biofilm, but the underlying mechanisms remain poorly understood. In this study, we have investigated the effect of an applied potential on the formation and electroactivity of biofilms established by Shewanella oneidensis bacteria on graphite felt electrodes in single- and double-chamber reactor configurations in oxic conditions. Using amperometry, cyclic voltammetry, and OCP/Power/Polarization curves techniques, we showed that a potential ranging between -0.3V and +0.5V (vs. Ag/AgCl/KCl sat.) and its converse application to a couple of electrodes leads to different electrochemical behaviors, anodic currents and biofilm architectures. For example, when the bacteria were confined in the anodic compartment of a double-chamber cell, a negative applied potential (-0.3V) at the bioanode favors a mediated electron transfer correlated with the progressive formation of a biofilm that fills the felt porosity and bridges the graphite fibers. In contrast, a positive applied potential (+0.3V) at the bioanode stimulates a direct electron transfer resulting in the fast-bacterial colonization of the fibers only. These results provide significant insight for the understanding of the complex bacteria-electrode interactions in microbial fuel cells.

摘要

在微生物燃料电池中,发电是通过细菌降解低品位有机物产生电子并将其转移到电极来实现的。从细菌到电极的电子转移的性质和效率由几个化学、物理和生物学参数决定。具体而言,已证明在生物阳极施加特定电位可刺激形成电活性生物膜,但其潜在机制仍知之甚少。在本研究中,我们研究了在有氧条件下,施加电位对单室和双室反应器配置的石墨毡电极上由希瓦氏菌形成的生物膜的形成和电活性的影响。使用安培法、循环伏安法和开路电位/功率/极化曲线技术,我们表明,介于-0.3V至+0.5V(相对于饱和Ag/AgCl/KCl)之间的电位及其在一对电极上的反向施加会导致不同的电化学行为、阳极电流和生物膜结构。例如,当细菌被限制在双室电池的阳极室中时,生物阳极上施加的负电位(-0.3V)有利于与逐渐形成填充毡孔隙并桥接石墨纤维的生物膜相关的介导电子转移。相反,生物阳极上施加的正电位(+0.3V)刺激直接电子转移,仅导致细菌快速定殖在纤维上。这些结果为理解微生物燃料电池中复杂的细菌-电极相互作用提供了重要的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验