Suppr超能文献

一种黄嘌呤核苷二磷酸环化酶的鉴定,该酶可促进希瓦氏菌 MR-1 在电极上形成生物膜。

Identification of a Diguanylate Cyclase That Facilitates Biofilm Formation on Electrodes by Shewanella oneidensis MR-1.

机构信息

School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.

Department of Life and Environmental System Science, Graduate School of Nanobiosciences, Yokohama City University, Yokohama, Japan.

出版信息

Appl Environ Microbiol. 2021 Apr 13;87(9). doi: 10.1128/AEM.00201-21.

Abstract

In many bacteria, cyclic diguanosine monophosphate (c-di-GMP), synthesized by diguanylate cyclase (DGC), serves as a second messenger involved in the regulation of biofilm formation. Although studies have suggested that c-di-GMP also regulates the formation of electrochemically active biofilms (EABFs) by MR-1, DGCs involved in this process remained to be identified. Here, we report that the SO_1646 gene, hereafter named , is upregulated under medium flow conditions in electrochemical flow cells (EFCs), and its product (DgcS) functions as a major DGC in MR-1. assays demonstrated that purified DgcS catalyzed the synthesis of c-di-GMP from GTP. Comparisons of intracellular c-di-GMP levels in the wild-type strain and a deletion mutant (Δ mutant) showed that production of c-di-GMP was markedly reduced in the Δ mutant when cells were grown in batch cultures and on electrodes in EFCs. Cultivation of the Δ mutant in EFCs also revealed that the loss of DgcS resulted in impaired biofilm formation and decreased current generation. These findings demonstrate that MR-1 uses DgcS to synthesize c-di-GMP under medium flow conditions, thereby activating biofilm formation on electrodes. Bioelectrochemical systems (BESs) have attracted wide attention owing to their utility in sustainable biotechnology processes, such as microbial fuel cells and electrofermentation systems. In BESs, electrochemically active bacteria (EAB) form biofilms on electrode surfaces, thereby serving as effective catalysts for the interconversion between chemical and electric energy. It is therefore important to understand mechanisms for the formation of biofilm by EAB grown on electrodes. Here, we show that a model EAB, MR-1, expresses DgcS as a major DGC, thereby activating the formation of biofilms on electrodes via c-di-GMP-dependent signal transduction cascades. The findings presented herein provide the molecular basis for improving electrochemical interactions between EAB and electrodes in BESs. The results also offer molecular insights into how regulates biofilm formation on solid surfaces in the natural environment.

摘要

在许多细菌中,环二鸟苷酸(c-di-GMP)由二鸟苷酸环化酶(DGC)合成,作为一种参与生物膜形成调节的第二信使。尽管研究表明 c-di-GMP 也调节电化学活性生物膜(EABF)的形成,但涉及该过程的 DGC 仍有待鉴定。在这里,我们报告 SO_1646 基因(以下称为 )在电化学流动池(EFC)中的中等流动条件下上调,其产物(DgcS)作为 MR-1 中的主要 DGC 发挥作用。酶测定表明,纯化的 DgcS 从 GTP 催化 c-di-GMP 的合成。在野生型菌株和 缺失突变体(Δ突变体)中比较细胞内 c-di-GMP 水平表明,当细胞在批量培养和 EFC 中的电极上生长时,Δ突变体中 c-di-GMP 的产生明显减少。在 EFC 中培养 Δ突变体也表明,DgcS 的缺失导致生物膜形成受损和电流产生减少。这些发现表明,MR-1 在中等流动条件下使用 DgcS 合成 c-di-GMP,从而激活电极上的生物膜形成。生物电化学系统(BES)因其在可持续生物技术过程中的应用而受到广泛关注,例如微生物燃料电池和电发酵系统。在 BES 中,电化学活性细菌(EAB)在电极表面形成生物膜,从而作为化学能和电能之间相互转化的有效催化剂。因此,了解在电极上生长的 EAB 形成生物膜的机制非常重要。在这里,我们表明,一种模型 EAB,MR-1,表达 DgcS 作为主要的 DGC,从而通过 c-di-GMP 依赖的信号转导级联激活电极上生物膜的形成。本文的研究结果为提高 BES 中 EAB 与电极之间的电化学相互作用提供了分子基础。研究结果还为 如何调节自然环境中固体表面生物膜的形成提供了分子见解。

相似文献

2
Nitric oxide regulation of cyclic di-GMP synthesis and hydrolysis in Shewanella woodyi.
Biochemistry. 2012 Mar 13;51(10):2087-99. doi: 10.1021/bi201753f. Epub 2012 Mar 5.
4
Indirect modulation of the intracellular c-Di-GMP level in Shewanella oneidensis MR-1 by MxdA.
Appl Environ Microbiol. 2011 Mar;77(6):2196-8. doi: 10.1128/AEM.01985-10. Epub 2011 Jan 28.
5
The Inhibitory Site of a Diguanylate Cyclase Is a Necessary Element for Interaction and Signaling with an Effector Protein.
J Bacteriol. 2016 May 13;198(11):1595-603. doi: 10.1128/JB.00090-16. Print 2016 Jun 1.
6
PdeB, a cyclic Di-GMP-specific phosphodiesterase that regulates Shewanella oneidensis MR-1 motility and biofilm formation.
J Bacteriol. 2013 Sep;195(17):3827-33. doi: 10.1128/JB.00498-13. Epub 2013 Jun 21.
7
Molecular mechanisms regulating the catabolic and electrochemical activities of Shewanella oneidensis MR-1.
Biosci Biotechnol Biochem. 2021 Jun 24;85(7):1572-1581. doi: 10.1093/bbb/zbab088.
9
Quantification of high-specificity cyclic diguanylate signaling.
Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12746-51. doi: 10.1073/pnas.1115663109. Epub 2012 Jul 16.
10
The diguanylate cyclase GcbA facilitates Pseudomonas aeruginosa biofilm dispersion by activating BdlA.
J Bacteriol. 2015 Jan 1;197(1):174-87. doi: 10.1128/JB.02244-14. Epub 2014 Oct 20.

引用本文的文献

2
Engineered Cell Elongation Promotes Extracellular Electron Transfer of Shewanella Oneidensis.
Adv Sci (Weinh). 2024 Nov;11(41):e2403067. doi: 10.1002/advs.202403067. Epub 2024 Sep 5.
4
Supplementation with Amino Acid Sources Facilitates Fermentative Growth of Shewanella oneidensis MR-1 in Defined Media.
Appl Environ Microbiol. 2023 Jul 26;89(7):e0086823. doi: 10.1128/aem.00868-23. Epub 2023 Jun 27.
5
Enhanced depolluting capabilities of microbial bioelectrochemical systems by synthetic biology.
Synth Syst Biotechnol. 2023 May 25;8(3):341-348. doi: 10.1016/j.synbio.2023.05.005. eCollection 2023 Sep.
6
Applications of Synthetic Biotechnology on Carbon Neutrality Research: A Review on Electrically Driven Microbial and Enzyme Engineering.
Front Bioeng Biotechnol. 2022 Jan 25;10:826008. doi: 10.3389/fbioe.2022.826008. eCollection 2022.
7
Towards Application of Electro-Fermentation for the Production of Value-Added Chemicals From Biomass Feedstocks.
Front Chem. 2022 Jan 19;9:805597. doi: 10.3389/fchem.2021.805597. eCollection 2021.
8
Biofilm Formation by in a Novel Septic Arthritis Model.
Front Cell Infect Microbiol. 2021 Sep 21;11:724113. doi: 10.3389/fcimb.2021.724113. eCollection 2021.
9
Comparative Genomics Revealing Insights into Niche Separation of the Genus .
Microorganisms. 2021 Jul 24;9(8):1577. doi: 10.3390/microorganisms9081577.

本文引用的文献

1
Elevated intracellular cyclic-di-GMP level in Shewanella oneidensis increases expression of c-type cytochromes.
Microb Biotechnol. 2020 Nov;13(6):1904-1916. doi: 10.1111/1751-7915.13636. Epub 2020 Jul 30.
3
Deteriorated biofilm-forming capacity and electroactivity of Shewanella oneidnsis MR-1 induced by insertion sequence (IS) elements.
Biosens Bioelectron. 2020 May 15;156:112136. doi: 10.1016/j.bios.2020.112136. Epub 2020 Mar 9.
4
A tandem GGDEF-EAL domain protein-regulated c-di-GMP signal contributes to spoilage-related activities of Shewanella baltica OS155.
Appl Microbiol Biotechnol. 2020 Mar;104(5):2205-2216. doi: 10.1007/s00253-020-10357-w. Epub 2020 Jan 11.
5
CRISPR/Cas9-mediated genome editing of Shewanella oneidensis MR-1 using a broad host-range pBBR1-based plasmid.
J Gen Appl Microbiol. 2020 Apr 13;66(1):41-45. doi: 10.2323/jgam.2019.04.007. Epub 2019 Aug 23.
7
Microfluidic-based transcriptomics reveal force-independent bacterial rheosensing.
Nat Microbiol. 2019 Aug;4(8):1274-1281. doi: 10.1038/s41564-019-0455-0. Epub 2019 May 13.
8
Towards development of electrogenetics using electrochemically active bacteria.
Biotechnol Adv. 2019 Nov 1;37(6):107351. doi: 10.1016/j.biotechadv.2019.02.007. Epub 2019 Feb 16.
9
Extracellular Polymeric Substances from Geobacter sulfurreducens Biofilms in Microbial Fuel Cells.
ACS Appl Mater Interfaces. 2019 Mar 6;11(9):8961-8968. doi: 10.1021/acsami.8b14340. Epub 2019 Feb 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验