Ghanam Abdelghani, Cecillon Sebastien, Sabac Andrei, Mohammadi Hasna, Amine Aziz, Buret François, Haddour Naoufel
Univ Lyon, Ecole Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, Ampère, UMR5005, 69130 Ecully, France.
Chemical Analysis and Biosensors Group, Laboratory of Process Engineering and Environment, Faculty of Science and Techniques, Hassan II University of Casablanca, B.P 146, Mohammedia 20000, Morocco.
Micromachines (Basel). 2023 Nov 23;14(12):2142. doi: 10.3390/mi14122142.
This research sought to enhance the efficiency and biocompatibility of anodes in bioelectrochemical systems (BESs) such as microbial fuel cells (MFCs), with an aim toward large-scale, real-world applications. The study focused on the effects of acid-heat treatment and chemical modification of three-dimensional porous pristine carbon felt (CF) on power generation. Different treatments were applied to the pristine CF, including coating with carbon nanofibers (CNFs) dispersed using dodecylbenzene sulfonate (SDBS) surfactant and biopolymer chitosan (CS). These processes were expected to improve the hydrophilicity, reduce the internal resistance, and increase the electrochemically active surface area of CF anodes. A high-resolution scanning electron microscopy (HR-SEM) analysis confirmed successful CNF coating. An electrochemical analysis showed improved conductivity and charge transfer toward [Fe(CN)6] redox probe with treated anodes. When used in an air cathode single-chamber MFC system, the untreated CF facilitated quicker electroactive biofilm growth and reached a maximum power output density of 3.4 W m, with an open-circuit potential of 550 mV. Despite a reduction in charge transfer resistance (R) with the treated CF anodes, the power densities remained unchanged. These results suggest that untreated CF anodes could be most promising for enhancing power output in BESs, offering a cost-effective solution for large-scale MFC applications.
本研究旨在提高生物电化学系统(BESs)(如微生物燃料电池(MFCs))中阳极的效率和生物相容性,目标是实现大规模的实际应用。该研究聚焦于三维多孔原始碳毡(CF)的酸热处理和化学改性对发电的影响。对原始CF进行了不同处理,包括用十二烷基苯磺酸钠(SDBS)表面活性剂分散的碳纳米纤维(CNFs)和生物聚合物壳聚糖(CS)进行包覆。这些处理有望提高CF阳极的亲水性、降低内阻并增加其电化学活性表面积。高分辨率扫描电子显微镜(HR-SEM)分析证实了CNFs的成功包覆。电化学分析表明,处理后的阳极对[Fe(CN)6]氧化还原探针的电导率和电荷转移有所改善。当用于空气阴极单室MFC系统时,未处理的CF促进了更快的电活性生物膜生长,最大功率输出密度达到3.4 W/m²,开路电位为550 mV。尽管处理后的CF阳极的电荷转移电阻(R)有所降低,但功率密度保持不变。这些结果表明,未处理的CF阳极在提高BESs的功率输出方面可能最具前景,为大规模MFC应用提供了一种经济高效的解决方案。