Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Present address: Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
BMC Cancer. 2017 Nov 13;17(1):759. doi: 10.1186/s12885-017-3729-z.
Neuroendocrine prostate cancer (NEPC) may be rising in prevalence as patients with advanced prostate cancer potentially develop resistance to contemporary anti-androgen treatment through a neuroendocrine phenotype. While prior studies comparing NEPC and prostatic adenocarcinoma have identified important candidates for targeted therapy, most have relied on few NEPC patients due to disease rarity, resulting in thousands of differentially expressed genes collectively and offering an opportunity for meta-analysis. Moreover, past studies have focused on prototypical NEPC samples with classic immunohistochemistry profiles, whereas there is increasing recognition of atypical phenotypes. In the primary setting, small cell prostatic carcinoma (SCPC) is frequently admixed with adenocarcinomas that may be clonally related, and a minority of SCPCs express markers typical of prostatic adenocarcinoma while rare cases do not express neuroendocrine markers. We derived a meta-signature of prototypical high-grade NEPC, then applied it to develop a classifier of primary SCPC incorporating disease heterogeneity.
Prototypical NEPC samples from 15 patients across 6 frozen tissue microarray datasets were assessed for genes with consistent outlier expression relative to adenocarcinomas. Resulting genes were used to determine subgroups of primary SCPCs (N=16) and high-grade adenocarcinomas (N=16) profiled by exon arrays using formalin-fixed paraffin-embedded (FFPE) material from our institutional archives. A subgroup classifier was developed using differential expression for feature selection, and applied to radical prostatectomy cohorts.
Sixty nine and 375 genes demonstrated consistent outlier expression in at least 80% and 60% of NEPC patients, with close resemblance in expression between NEPC and small cell lung cancer. Clustering by these genes generated 3 subgroups among primary samples from our institution. Nearest centroid classification based on the predominant phenotype from each subgroup (9 prototypical SCPCs, 9 prototypical adenocarcinomas, and 4 atypical SCPCs) achieved a 4.5% error rate by leave-one-out cross-validation. The classifier identified SCPC-like expression in 40% (2/5) of mixed adenocarcinomas and 0.3-0.6% of adenocarcinomas from prospective (4/2293) and retrospective (2/355) radical prostatectomy cohorts, where both SCPC-like retrospective cases subsequently developed metastases.
Meta-analysis generates a robust signature of prototypical high-grade NEPC, and may facilitate development of a primary SCPC classifier based on FFPE material with potential prognostic implications.
神经内分泌前列腺癌(NEPC)的发病率可能在上升,因为晚期前列腺癌患者可能会通过神经内分泌表型对当代抗雄激素治疗产生耐药性。虽然先前比较 NEPC 和前列腺腺癌的研究已经确定了靶向治疗的重要候选者,但由于疾病罕见,大多数研究都依赖于少数 NEPC 患者,这导致数千个差异表达的基因共同存在,为荟萃分析提供了机会。此外,过去的研究集中在具有经典免疫组织化学特征的典型 NEPC 样本上,而越来越多的人认识到非典型表型。在原发性疾病中,小细胞前列腺癌(SCPC)常与可能具有克隆相关性的腺癌混合存在,少数 SCPC 表达典型的前列腺腺癌标志物,而少数情况下不表达神经内分泌标志物。我们得出了一个典型的高级别 NEPC 的荟萃分析特征,然后将其应用于开发一个包含疾病异质性的原发性 SCPC 分类器。
从 6 个冷冻组织微阵列数据集的 15 名患者的样本中评估了与腺癌相比具有一致异常表达的基因。使用这些基因来确定原发性 SCPC (N=16)和高级别腺癌(N=16)的亚组,这些样本是使用我们机构档案中的福尔马林固定石蜡包埋(FFPE)材料进行外显子阵列分析的。使用差异表达进行特征选择,然后应用于根治性前列腺切除术队列,从而开发了一个亚组分类器。
在至少 80%和 60%的 NEPC 患者中,有 69 个和 375 个基因表现出一致的异常表达,NEPC 与小细胞肺癌之间的表达非常相似。根据这些基因进行聚类,在我们机构的原发性样本中生成了 3 个亚组。基于每个亚组的主要表型(9 个典型的 SCPC、9 个典型的腺癌和 4 个非典型的 SCPC)进行最近质心分类,通过留一法交叉验证的错误率为 4.5%。该分类器在 5 个混合性腺癌中的 40%(2/5)和前瞻性(4/2293)和回顾性(2/355)根治性前列腺切除术队列中的 0.3-0.6%的腺癌中识别出 SCPC 样表达,其中 2 个 SCPC 样回顾性病例随后发生转移。
荟萃分析生成了一个典型的高级别 NEPC 的稳健特征,并且可能有助于基于 FFPE 材料开发原发性 SCPC 分类器,具有潜在的预后意义。