Laboratoire Écologie Fonctionnelle et Environnement (EcoLab), University of Toulouse, UMR5245, CNRS, INPT, UPS, Toulouse, France; Institute of Environmental Technology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam.
Laboratoire Écologie Fonctionnelle et Environnement (EcoLab), University of Toulouse, UMR5245, CNRS, INPT, UPS, Toulouse, France.
Sci Total Environ. 2018 Mar 15;618:1284-1297. doi: 10.1016/j.scitotenv.2017.09.237. Epub 2017 Nov 11.
The development of efficient bioremediation techniques to reduce aquatic pollutant load in natural sediment is one of the current challenges in ecological engineering. A nature-based solution for metal bioremediation is proposed through a combination of bioturbation and phytoremediation processes in experimental indoor microcosms. The invertebrates Tubifex tubifex (Oligochaeta Tubificidae) was used as an active ecological engineer for bioturbation enhancement. The riparian plant species Typha latifolia was selected for its efficiency in phyto-accumulating pollutants from sediment. Phytoremediation efficiency was estimated by using cadmium as a conservative pollutant known to bio-accumulate in plants, and initially introduced in the overlying water (20μg Cd/L of cadmium nitrate - Cd(NO)·4HO). Biological sediment reworking by invertebrates' activity was quantified using luminophores (inert particulates). Our results showed that bioturbation caused by tubificid worms' activity followed the bio-conveying transport model with a downward vertical velocity (V) of luminophores ranging from 16.7±4.5 to 18.5±3.9cm·year. The biotransport changed the granulometric properties of the surface sediments, and this natural process was still efficient under cadmium contamination. The highest value of Cd enrichment coefficient for plant roots was observed in subsurface sediment layer (below 1cm to 5cm depth) with tubificids addition. We demonstrated that biotransport changed the distribution of cadmium across the sediment column as well as it enhanced the pumping of this metal from the surface to the anoxic sediment layers, thereby increasing the bioaccumulation of cadmium in the root system of Typha latifolia. This therefore highlights the potential of bioturbation as a tool to be considered in future as integrated bioremediation strategies of metallic polluted sediment in aquatic ecosystems.
开发高效的生物修复技术以减少天然沉积物中的水污染物负荷是生态工程当前面临的挑战之一。本研究提出了一种基于自然的金属生物修复方法,该方法将生物搅动和植物修复过程结合在实验室内的微宇宙中。环节动物颤蚓(Oligochaeta Tubificidae)被用作生物搅动增强的主动生态工程师。滨水植物物种香蒲(Typha latifolia)因其从沉积物中植物富集污染物的效率而被选中。通过使用镉作为生物积累在植物中的保守污染物,来估计植物修复效率,镉最初被引入上覆水(20μg Cd/L 的硝酸镉-Cd(NO)·4HO)。使用示踪剂(惰性颗粒)量化无脊椎动物活动引起的生物沉积物再加工。我们的结果表明,颤蚓活动引起的生物搅动遵循生物输送运输模型,示踪剂的垂直向下速度(V)范围为 16.7±4.5 至 18.5±3.9cm·year。生物传输改变了表层沉积物的粒度特性,并且在镉污染下,这种自然过程仍然有效。在添加颤蚓的情况下,植物根系的 Cd 富集系数的最高值出现在次表层沉积物层(1cm 至 5cm 深度以下)。我们证明,生物传输改变了镉在整个沉积物柱中的分布,并且它增强了从表面到缺氧沉积物层的这种金属的抽吸,从而增加了镉在香蒲根系中的生物积累。这因此强调了生物搅动作为一种工具的潜力,在未来可以作为水生生态系统中金属污染沉积物的综合生物修复策略的考虑因素。