Suppr超能文献

生活方式和生殖因素与 p53 和 MAPK 表达的卵巢癌风险。

Lifestyle and Reproductive Factors and Ovarian Cancer Risk by p53 and MAPK Expression.

机构信息

Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington.

Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics and Gynecology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.

出版信息

Cancer Epidemiol Biomarkers Prev. 2018 Jan;27(1):96-102. doi: 10.1158/1055-9965.EPI-17-0609. Epub 2017 Nov 13.

Abstract

One model of ovarian cancer development model divides tumors into two types. Type I tumors are characterized by and mutations, which can activate mitogen-activated protein kinase (MAPK). Type II tumors are characterized by tubal precursor lesions with p53 mutations. We evaluated the association between lifestyle and reproductive factors and risk of ovarian cancer defined by p53 and MAPK expression. Epithelial ovarian cancer cases ( = 274) and controls ( = 1,907) were identified from the Nurses' Health Study and Nurses' Health Study II prospective cohorts, and the population-based New England Case-Control study. Reproductive and lifestyle exposures were assessed by questionnaire/interview. We performed immunohistochemical assays for p53 and MAPK expression. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using polytomous logistic regression. Parity was associated with a decreased risk of p53 wild-type tumors (OR = 0.31; 95% CI, 0.18-0.55), but not p53-mutant tumors (OR = 0.92; 95% CI, 0.54-1.59)( < 0.01). Family history of breast or ovarian cancer was associated with risk of MAPK-negative (OR = 2.06; 95% CI, 1.39-3.06), but not MAPK-positive tumors (OR = 0.74; 95% CI, 0.43-1.27; < 0.01). In cross-classified analyses, family history of breast or ovarian cancer was most strongly associated with p53-mutant/MAPK-negative tumors (OR = 2.33; 95% CI, 1.44-3.75). Differences by MAPK expression were also observed for estrogen plus progesterone hormone therapy use ( = 0.03). These findings provide evidence that parity, family history, and estrogen plus progesterone hormone therapy use may be differentially associated with tumor subtypes defined by p53 and MAPK expression. In future studies, other immunohistochemical markers or gene expression profiles that more clearly define these subtypes should be considered. .

摘要

一种卵巢癌发展模型将肿瘤分为两类。I 型肿瘤的特征是 和 突变,可激活丝裂原活化蛋白激酶(MAPK)。II 型肿瘤的特征是具有 p53 突变的输卵管前体病变。我们评估了生活方式和生殖因素与 p53 和 MAPK 表达定义的卵巢癌风险之间的关联。上皮性卵巢癌病例(=274)和对照(=1907)来自护士健康研究和护士健康研究 II 前瞻性队列,以及基于人群的新英格兰病例对照研究。通过问卷/访谈评估生殖和生活方式暴露。我们进行了 p53 和 MAPK 表达的免疫组织化学检测。使用多项逻辑回归估计比值比(OR)和 95%置信区间(CI)。生育力与 p53 野生型肿瘤的风险降低相关(OR=0.31;95%CI,0.18-0.55),但与 p53 突变型肿瘤无关(OR=0.92;95%CI,0.54-1.59)(<0.01)。乳腺癌或卵巢癌家族史与 MAPK 阴性肿瘤(OR=2.06;95%CI,1.39-3.06)相关,但与 MAPK 阳性肿瘤无关(OR=0.74;95%CI,0.43-1.27;<0.01)。在交叉分类分析中,乳腺癌或卵巢癌家族史与 p53 突变/MAPK 阴性肿瘤的相关性最强(OR=2.33;95%CI,1.44-3.75)。MAPK 表达的差异也观察到与雌激素加孕激素激素治疗的使用有关(=0.03)。这些发现提供了证据表明,生育力、家族史和雌激素加孕激素激素治疗的使用可能与 p53 和 MAPK 表达定义的肿瘤亚型有不同的相关性。在未来的研究中,应该考虑其他免疫组织化学标志物或基因表达谱,以更清楚地定义这些亚型。

相似文献

1
Lifestyle and Reproductive Factors and Ovarian Cancer Risk by p53 and MAPK Expression.
Cancer Epidemiol Biomarkers Prev. 2018 Jan;27(1):96-102. doi: 10.1158/1055-9965.EPI-17-0609. Epub 2017 Nov 13.
2
Relationship between lifetime ovulatory cycles and overexpression of mutant p53 in epithelial ovarian cancer.
J Natl Cancer Inst. 1997 Jul 2;89(13):932-8. doi: 10.1093/jnci/89.13.932.
4
Association of Ovarian Tumor β2-Adrenergic Receptor Status with Ovarian Cancer Risk Factors and Survival.
Cancer Epidemiol Biomarkers Prev. 2016 Dec;25(12):1587-1594. doi: 10.1158/1055-9965.EPI-16-0534. Epub 2016 Sep 1.
6
Reproductive characteristics in relation to ovarian cancer risk by histologic pathways.
Hum Reprod. 2013 May;28(5):1406-17. doi: 10.1093/humrep/des466. Epub 2013 Jan 12.
7
Relationship between number of ovulatory cycles and accumulation of mutant p53 in epithelial ovarian cancer.
J Natl Cancer Inst. 1998 Nov 18;90(22):1729-34. doi: 10.1093/jnci/90.22.1729.
9
Hormonal and reproductive factors and the risk of ovarian cancer.
Cancer Causes Control. 2017 May;28(5):393-403. doi: 10.1007/s10552-016-0848-9. Epub 2017 Jan 19.
10
Risk factors for benign serous and mucinous epithelial ovarian tumors.
Obstet Gynecol. 2007 Mar;109(3):647-54. doi: 10.1097/01.AOG.0000254159.75977.fa.

引用本文的文献

1
Predictors of residual disease after debulking surgery in advanced stage ovarian cancer.
Front Oncol. 2023 Jan 24;13:1090092. doi: 10.3389/fonc.2023.1090092. eCollection 2023.
4
Lifetime ovulatory years and ovarian cancer gene expression profiles.
J Ovarian Res. 2022 May 13;15(1):59. doi: 10.1186/s13048-022-00995-1.
5
Obesity and gynecological cancers: A toxic relationship.
Int J Gynaecol Obstet. 2021 Oct;155 Suppl 1(Suppl 1):123-134. doi: 10.1002/ijgo.13870.
6
Review of Mendelian Randomization Studies on Ovarian Cancer.
Front Oncol. 2021 Aug 11;11:681396. doi: 10.3389/fonc.2021.681396. eCollection 2021.

本文引用的文献

2
The association between reproductive and hormonal factors and ovarian cancer by estrogen-α and progesterone receptor status.
Gynecol Oncol. 2016 Dec;143(3):628-635. doi: 10.1016/j.ygyno.2016.09.024. Epub 2016 Oct 5.
3
Ovarian Cancer Risk Factors by Histologic Subtype: An Analysis From the Ovarian Cancer Cohort Consortium.
J Clin Oncol. 2016 Aug 20;34(24):2888-98. doi: 10.1200/JCO.2016.66.8178. Epub 2016 Jun 20.
5
The Dualistic Model of Ovarian Carcinogenesis: Revisited, Revised, and Expanded.
Am J Pathol. 2016 Apr;186(4):733-47. doi: 10.1016/j.ajpath.2015.11.011.
6
An Immunohistochemical Algorithm for Ovarian Carcinoma Typing.
Int J Gynecol Pathol. 2016 Sep;35(5):430-41. doi: 10.1097/PGP.0000000000000274.
7
Menopausal hormone use and ovarian cancer risk: individual participant meta-analysis of 52 epidemiological studies.
Lancet. 2015 May 9;385(9980):1835-42. doi: 10.1016/S0140-6736(14)61687-1. Epub 2015 Feb 13.
9
Tumor repressor protein 53 and steroid hormones provide a new paradigm for ovarian cancer metastases.
Mol Endocrinol. 2014 Jan;28(1):127-37. doi: 10.1210/me.2013-1308. Epub 2013 Jan 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验