Department of Biological Sciences, University of North Texas, Denton, Texas 76203.
Uttar Banga Krishi Viswavidyalaya, Pundibari, Cooch Behar 736165, India.
Plant Physiol. 2018 Jan;176(1):879-890. doi: 10.1104/pp.17.01438. Epub 2017 Nov 13.
The actin cytoskeleton network has an important role in plant cell growth, division, and stress response. Actin-depolymerizing factors (ADFs) are a group of actin-binding proteins that contribute to reorganization of the actin network. Here, we show that the Arabidopsis () is required in the phloem for controlling infestation by Sülzer, commonly known as the green peach aphid (GPA), which is an important phloem sap-consuming pest of more than fifty plant families. In agreement with a role for the actin-depolymerizing function of ADF3 in defense against the GPA, we show that resistance in was restored by overexpression of the related ADF4 and the actin cytoskeleton destabilizers, cytochalasin D and latrunculin B. Electrical monitoring of the GPA feeding behavior indicates that the GPA stylets found sieve elements faster when feeding on the mutant compared to the wild-type plant. In addition, once they found the sieve elements, the GPA fed for a more prolonged period from sieve elements of compared to the wild-type plant. The longer feeding period correlated with an increase in fecundity and population size of the GPA and a parallel reduction in callose deposition in the mutant. The -conferred susceptibility to GPA was overcome by expression of the coding sequence from the phloem-specific promoter, thus confirming the importance of function in the phloem. We further demonstrate that the -dependent defense mechanism is linked to the transcriptional up-regulation of , which is an important regulator of defenses against the GPA.
肌动蛋白细胞骨架网络在植物细胞生长、分裂和应激反应中具有重要作用。肌动蛋白解聚因子(ADFs)是一组肌动蛋白结合蛋白,有助于肌动蛋白网络的重组。在这里,我们表明拟南芥()在韧皮部中对于控制绿桃蚜(GPA)的侵害是必需的,GPA 通常被称为绿桃蚜,是五十多种植物科的重要韧皮部汁液消耗性害虫。与 ADF3 的肌动蛋白解聚功能在抵御 GPA 中的作用一致,我们表明通过过表达相关的 ADF4 和肌动蛋白细胞骨架解稳定剂细胞松弛素 D 和拉托鲁菌素 B,恢复了对的抗性。对 GPA 取食行为的电监测表明,与野生型植物相比,GPA 口器在取食时更快地发现筛管分子。此外,一旦它们找到了筛管分子,GPA 就会从筛管分子中取食更长的时间与野生型植物相比。更长的取食时间与 GPA 的繁殖力和种群规模增加以及 突变体中 callose 沉积的平行减少相关。通过表达韧皮部特异性 启动子的 编码序列,克服了对 GPA 的易感性,从而证实了 在韧皮部中的功能的重要性。我们进一步证明,依赖于 的防御机制与 的转录上调有关,这是抵御 GPA 的重要调节剂。