Department of Pharmacogenetics, Reproductive and Developmental Biology Laboratory.
Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709.
J Biol Chem. 2018 Jan 5;293(1):333-344. doi: 10.1074/jbc.M117.806604. Epub 2017 Nov 13.
The nuclear protein constitutive active/androstane receptor (CAR or NR1I3) regulates several liver functions such as drug and energy metabolism and cell growth or death, which are often involved in the development of diseases such as diabetes and hepatocellular carcinoma. CAR undergoes a conversion from inactive homodimers to active heterodimers with retinoid X receptor α (RXRα), and phosphorylation of the DNA-binding domain (DBD) at Thr-38 in CAR regulates this conversion. Here, we uncovered the molecular mechanism by which this phosphorylation regulates the intramolecular interaction between CAR's DBD and ligand-binding domain (LBD), enabling the homodimer-heterodimer conversion. Phosphomimetic substitution of Thr-38 with Asp increased co-immunoprecipitation of the CAR DBD with CAR LBD in Huh-7 cells. Isothermal titration calorimetry assays also revealed that recombinant CAR DBD-T38D, but not nonphosphorylated CAR DBD, bound the CAR LBD peptide. This DBD-LBD interaction masked CAR's dimer interface, preventing CAR homodimer formation. Of note, EGF signaling weakened the interaction of CAR DBD T38D with CAR LBD, converting CAR to the homodimer form. The DBD-T38D-LBD interaction also prevented CAR from forming a heterodimer with RXRα. However, this interaction opened up a CAR surface, allowing interaction with protein phosphatase 2A. Thr-38 dephosphorylation then dissociated the DBD-LBD interaction, allowing CAR heterodimer formation with RXRα. We conclude that the intramolecular interaction of phosphorylated DBD with the LBD enables CAR to adapt a transient monomer configuration that can be converted to either the inactive homodimer or the active heterodimer.
核蛋白组成型激活/雄激素受体 (CAR 或 NR1I3) 调节多种肝脏功能,如药物和能量代谢以及细胞生长或死亡,这些功能通常与糖尿病和肝细胞癌等疾病的发展有关。CAR 从无活性的同源二聚体转化为与视黄酸 X 受体 α (RXRα) 的活性异源二聚体,并且 CAR 的 DNA 结合域 (DBD) 上 Thr-38 的磷酸化调节这种转化。在这里,我们揭示了这种磷酸化调节 CAR 的 DBD 和配体结合域 (LBD) 之间分子内相互作用的分子机制,使同源二聚体-异源二聚体转化成为可能。用 Asp 替代 Thr-38 的磷酸模拟取代增加了 Huh-7 细胞中 CAR DBD 与 CAR LBD 的共免疫沉淀。等温滴定量热法测定也表明,重组 CAR DBD-T38D,但不是非磷酸化的 CAR DBD,与 CAR LBD 肽结合。这种 DBD-LBD 相互作用掩盖了 CAR 的二聚体界面,阻止了 CAR 同源二聚体的形成。值得注意的是,EGF 信号减弱了 CAR DBD T38D 与 CAR LBD 的相互作用,使 CAR 转化为同源二聚体形式。DBD-T38D-LBD 相互作用也阻止了 CAR 与 RXRα 形成异源二聚体。然而,这种相互作用开辟了一个 CAR 表面,允许与蛋白磷酸酶 2A 相互作用。然后 Thr-38 去磷酸化解离了 DBD-LBD 相互作用,允许 CAR 与 RXRα 形成异源二聚体。我们得出结论,磷酸化的 DBD 与 LBD 的分子内相互作用使 CAR 能够适应瞬时单体构象,这种构象可以转化为无活性的同源二聚体或活性的异源二聚体。