Pellegrino Robert, Samoilova Khristina, Ihara Yusuke, Andres Matthew, Singh Vijay, Gerkin Richard C, Koulakov Alexei, Mainland Joel D
bioRxiv. 2025 Aug 12:2025.08.08.668954. doi: 10.1101/2025.08.08.668954.
In vision and hearing, standardized units such as lumens (for brightness) and decibels (for loudness) allow consistent quantification of stimulus intensity, enabling precise control of sensory experiences. Olfaction, by contrast, currently lacks a robust quantitative framework linking physical stimulus properties directly to perceived odor intensity, complicating efforts to accurately characterize and manipulate aromas. To bridge this gap, we used a precisely controlled odor delivery system combined with deep learning models to predict the intensity of both single molecules and mixtures from physical properties. These models allowed us to develop an automated, quantitative method that accurately identifies which volatile components meaningfully contribute to aroma perception, overcoming the limitations of traditional heuristic approaches such as odor activity values and demonstrating practical utility in complex naturalistic odors.
在视觉和听觉方面,诸如流明(用于衡量亮度)和分贝(用于衡量响度)等标准化单位能够对刺激强度进行一致的量化,从而实现对感官体验的精确控制。相比之下,嗅觉目前缺乏一个强大的定量框架,无法将物理刺激特性直接与感知到的气味强度联系起来,这使得准确表征和操控香气的工作变得复杂。为了弥补这一差距,我们使用了一个精确控制的气味输送系统,并结合深度学习模型,根据物理特性预测单分子和混合物的强度。这些模型使我们能够开发出一种自动化的定量方法,该方法能够准确识别哪些挥发性成分对香气感知有显著贡献,克服了诸如气味活性值等传统启发式方法的局限性,并在复杂的自然气味中展现出实际效用。