Vandenheuvel Dieter, Rombouts Sofie, Adriaenssens Evelien M
Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, Box 2642, B-3001, Leuven, Belgium.
Centre for Microbial Ecology and Genomics, University of Pretoria, Hatfield, 0028, Pretoria, South Africa.
Methods Mol Biol. 2018;1681:59-69. doi: 10.1007/978-1-4939-7343-9_5.
In bacteriophage research and therapy, most applications ask for highly purified phage suspensions. The standard technique for this is ultracentrifugation using cesium chloride gradients. This technique is cumbersome, elaborate and expensive. Moreover, it is unsuitable for the purification of large quantities of phage suspensions.The protocol described here, uses anion-exchange chromatography to bind phages to a stationary phase. This is done using an FLPC system, combined with Convective Interaction Media (CIM) monoliths. Afterward, the column is washed to remove impurities from the CIM disk. By using a buffer solution with a high ionic strength, the phages are subsequently eluted from the column and collected. In this way phages can be efficiently purified and concentrated.This protocol can be used to determine the optimal buffers, stationary phase chemistry and elution conditions, as well as the maximal capacity and recovery of the columns.
在噬菌体研究与治疗中,大多数应用都需要高纯度的噬菌体悬浮液。为此,标准技术是使用氯化铯梯度进行超速离心。该技术繁琐、复杂且昂贵。此外,它不适用于大量噬菌体悬浮液的纯化。此处所述的方案利用阴离子交换色谱法将噬菌体结合到固定相上。这是通过使用快速蛋白质液相色谱(FLPC)系统与对流相互作用介质(CIM)整体柱相结合来完成的。之后,冲洗柱子以去除CIM盘上的杂质。通过使用具有高离子强度的缓冲溶液,随后将噬菌体从柱子上洗脱并收集。通过这种方式,噬菌体可以得到高效的纯化和浓缩。该方案可用于确定最佳缓冲液、固定相化学性质和洗脱条件,以及柱子的最大容量和回收率。