Departments of Bioengineering, Genetics, Medicine & Biomedical Data Science, Stanford University, Stanford, California, USA.
Clin Pharmacol Ther. 2018 Feb;103(2):171-173. doi: 10.1002/cpt.918. Epub 2017 Nov 14.
Our ability to collect data at every stage of the translational pipeline creates great opportunities for formulating hypotheses both "upstream" (towards clinical implementation) and "downstream" (back to basic discovery). Translational researchers therefore must integrate information at multiple scales to both generate and test hypotheses-to some extent they must all be comfortable with the basics of "big data" analyses. This increased focus on data-driven science requires an understanding of basic experimental and clinical data collection-understanding that likely cannot efficiently be gathered through traditional apprenticeship models. Thus, new curricula are required to ensure that next-generation scientists have a new combination of skills required for integrating data to catalyze discovery.
我们在转化管道的每个阶段收集数据的能力为制定“上游”(向临床实施)和“下游”(回到基础发现)的假设创造了巨大的机会。因此,转化研究人员必须整合多个尺度的信息,以生成和检验假设——在某种程度上,他们都必须熟悉“大数据”分析的基础知识。这种对数据驱动科学的日益关注需要对基本实验和临床数据收集的理解——理解可能无法通过传统的学徒模式有效地收集。因此,需要新的课程来确保下一代科学家拥有整合数据以促进发现所需的新技能组合。