Suppr超能文献

脑科学与数据科学的融合。

Bridging the Brain and Data Sciences.

机构信息

Department of Psychology, University of Virginia, Charlottesville, Virginia, USA.

School of Data Science, University of Virginia, Charlottesville, Virginia, USA.

出版信息

Big Data. 2021 Jun;9(3):153-187. doi: 10.1089/big.2020.0065. Epub 2020 Nov 18.

Abstract

Brain scientists are now capable of collecting more data in a single experiment than researchers a generation ago might have collected over an entire career. Indeed, the brain itself seems to thirst for more and more data. Such digital information not only comprises individual studies but is also increasingly shared and made openly available for secondary, confirmatory, and/or combined analyses. Numerous web resources now exist containing data across spatiotemporal scales. Data processing workflow technologies running via cloud-enabled computing infrastructures allow for large-scale processing. Such a move toward greater openness is fundamentally changing how brain science results are communicated and linked to available raw data and processed results. Ethical, professional, and motivational issues challenge the whole-scale commitment to data-driven neuroscience. Nevertheless, fueled by government investments into primary brain data collection coupled with increased sharing and community pressure challenging the dominant publishing model, large-scale brain and data science is here to stay.

摘要

脑科学家现在能够在一次实验中收集到比前一代人在整个职业生涯中可能收集到的更多的数据。事实上,大脑本身似乎渴望更多的数据。这些数字信息不仅包括单个研究,而且还越来越多地被共享,并为二次、确认和/或组合分析而公开提供。现在有许多网络资源包含跨越时空尺度的数据。通过云计算基础设施运行的数据处理工作流程技术允许进行大规模处理。这种向更大开放性的转变从根本上改变了大脑科学研究结果的交流方式,以及与可用原始数据和处理结果的联系方式。伦理、专业和激励问题挑战着对数据驱动的神经科学的全面投入。然而,政府对原始大脑数据收集的投资增加,加上数据共享和社区压力的增加,挑战了主导的出版模式,大规模的大脑和数据科学已经成为现实。

相似文献

1
Bridging the Brain and Data Sciences.脑科学与数据科学的融合。
Big Data. 2021 Jun;9(3):153-187. doi: 10.1089/big.2020.0065. Epub 2020 Nov 18.
2
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
3
CyVerse: Cyberinfrastructure for open science.CyVerse:开放科学的网络基础设施。
PLoS Comput Biol. 2024 Feb 7;20(2):e1011270. doi: 10.1371/journal.pcbi.1011270. eCollection 2024 Feb.

本文引用的文献

3
How Big Data and High-performance Computing Drive Brain Science.大数据和高性能计算如何推动脑科学发展。
Genomics Proteomics Bioinformatics. 2019 Aug;17(4):381-392. doi: 10.1016/j.gpb.2019.09.003. Epub 2019 Dec 2.
7
How data science can advance mental health research.数据科学如何推动心理健康研究。
Nat Hum Behav. 2019 Jan;3(1):24-32. doi: 10.1038/s41562-018-0470-9. Epub 2018 Dec 10.
8
Sparse Computation in Adaptive Spiking Neural Networks.自适应脉冲神经网络中的稀疏计算
Front Neurosci. 2019 Jan 8;12:987. doi: 10.3389/fnins.2018.00987. eCollection 2018.
9
The Costs of Reproducibility.可重复性的代价。
Neuron. 2019 Jan 2;101(1):11-14. doi: 10.1016/j.neuron.2018.11.030.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验