BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore.
Med Image Anal. 2014 Jan;18(1):211-27. doi: 10.1016/j.media.2013.10.008. Epub 2013 Oct 26.
We present a new approach to incorporating information from heterogeneous images of migrating cells in 3D gel. We study 3D angiogenic sprouting, where cells burrow into the gel matrix, communicate with other cells and create vascular networks. We combine time-lapse fluorescent images of stained cell nuclei and transmitted light images of the background gel to track cell trajectories. The nuclei images are sampled less frequently due to photo toxicity. Hence, 3D cell tracking can be performed more reliably when 2D sprout profiles, extracted from gel matrix images, are effectively incorporated. We employ a Bayesian filtering approach to optimally combine the two heterogeneous images with different sampling rates. We construct stochastic models to predict cell locations and sprout profiles and condition the likelihood of nuclei location by the sprout profile. The conditional distribution is non-Gaussian and the cell dynamics is non-linear. To jointly update cell and sprout estimates, we use a Rao-Blackwell particle filter. Simulation and experimental results show accurate tracking of multiple cells along with sprout formation, demonstrating synergistic effects of incorporating the two types of images.
我们提出了一种新方法,用于整合 3D 凝胶中迁移细胞的异质图像信息。我们研究了血管生成发芽的 3D 情况,其中细胞钻入凝胶基质中,与其他细胞进行通信并创建血管网络。我们结合了染色细胞核的荧光时程图像和背景凝胶的透射光图像,以跟踪细胞轨迹。由于光毒性,细胞核图像的采样频率较低。因此,当有效地合并从凝胶基质图像中提取的 2D 发芽轮廓时,可以更可靠地进行 3D 细胞跟踪。我们采用贝叶斯滤波方法来最优地组合两种具有不同采样率的异质图像。我们构建随机模型来预测细胞位置和发芽轮廓,并通过发芽轮廓来预测细胞核位置的可能性。条件分布是非高斯的,细胞动力学是非线性的。为了联合更新细胞和发芽估计,我们使用 Rao-Blackwell 粒子滤波器。模拟和实验结果表明,可以沿着发芽形成准确地跟踪多个细胞,证明了合并两种类型的图像的协同作用。