Suppr超能文献

大肠杆菌在砷化镓(001)表面的生长。

Growth of Escherichia coli on the GaAs (001) surface.

机构信息

Interdisciplinary Institute for Technological Innovation (3IT), CNRS UMI-3463, Department of Electrical and Computer Engineering, Faculty of Engineering, Université de Sherbrooke, 3000, boul. de l'Université, Sherbrooke, Québec, Canada J1K 0A5.

Interdisciplinary Institute for Technological Innovation (3IT), CNRS UMI-3463, Department of Electrical and Computer Engineering, Faculty of Engineering, Université de Sherbrooke, 3000, boul. de l'Université, Sherbrooke, Québec, Canada J1K 0A5; Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, Québec, Canada J1H 5N4.

出版信息

Talanta. 2018 Feb 1;178:69-77. doi: 10.1016/j.talanta.2017.08.097. Epub 2017 Sep 1.

Abstract

Detection of pathogenic bacteria and monitoring their susceptibility to antibiotics are of great importance in the fields of medicine, pharmaceutical research, as well as water and food industries. In order to develop a photonic biosensor for detection of bacteria by taking advantage of photoluminescence (PL) of GaAs-based devices, we have investigated the capture and growth of Escherichia coli K12 on bare and biofunctionalized surfaces of GaAs (001) - a material of interest for capping different semiconductor microstructures. The results were compared with the capture and growth of Escherichia coli K12 on Au surfaces that have commonly been applied for studying a variety of biological and biochemical reactions. We found that neither GaAs nor Au-coated glass wafers placed in Petri dishes inoculated with bacteria inhibited bacterial growth in nutrient agar, regardless of the wafers being bare or biofunctionalized. However, the capture and growth of bacteria on biofunctionalized surfaces of GaAs and Au wafers kept in a flow cell and exposed to different concentrations of bacteria and growth medium revealed that the initial surface coverage and the subsequent bacterial growth were dependent on the biofunctionalization architecture, with antibody-coated surfaces clearly being most efficient in capturing bacteria and offering better conditions for growth of bacteria. We have observed that, as long as the GaAs wafers were exposed to bacterial suspensions at concentrations of at least 10 CFU/mL, bacteria could grow on the surface of wafers, regardless of the type of biofunctionalization architecture used to capture the bacteria. These results provide important insight towards the successful development of GaAs-based devices designed for photonic monitoring of bacterial reactions to different biochemical environments.

摘要

在医学、药物研究以及水和食品工业领域,检测致病菌及其对抗生素的敏感性至关重要。为了利用基于 GaAs 的器件的光致发光(PL)开发用于检测细菌的光子生物传感器,我们研究了大肠杆菌 K12 在 GaAs(001)裸表面和生物功能化表面上的捕获和生长,GaAs 是一种用于覆盖不同半导体微结构的材料。将结果与大肠杆菌 K12 在 Au 表面上的捕获和生长进行了比较,Au 表面常用于研究各种生物和生化反应。我们发现,无论 GaAs 或 Au 涂层玻璃晶片是否在接种有细菌的培养皿中,都不会抑制营养琼脂中的细菌生长,而不管晶片是裸的还是生物功能化的。然而,在流动池中对生物功能化的 GaAs 和 Au 晶片进行的细菌捕获和生长研究,以及对不同浓度的细菌和生长培养基的暴露,表明细菌的初始表面覆盖率和随后的细菌生长取决于生物功能化结构,其中抗体涂层表面在捕获细菌方面明显最为有效,为细菌的生长提供了更好的条件。我们观察到,只要 GaAs 晶片在至少 10 CFU/mL 的细菌悬浮液中暴露,细菌就可以在晶片表面生长,而不管用于捕获细菌的生物功能化结构类型如何。这些结果为成功开发用于监测不同生化环境中细菌反应的基于 GaAs 的设备提供了重要的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验