Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138;
Department of Physics, Northeastern University, Boston, MA 02115.
Proc Natl Acad Sci U S A. 2017 Nov 28;114(48):12663-12668. doi: 10.1073/pnas.1705921114. Epub 2017 Nov 14.
Collective cell migration is a highly regulated process involved in wound healing, cancer metastasis, and morphogenesis. Mechanical interactions among cells provide an important regulatory mechanism to coordinate such collective motion. Using a self-propelled Voronoi (SPV) model that links cell mechanics to cell shape and cell motility, we formulate a generalized mechanical inference method to obtain the spatiotemporal distribution of cellular stresses from measured traction forces in motile tissues and show that such traction-based stresses match those calculated from instantaneous cell shapes. We additionally use stress information to characterize the rheological properties of the tissue. We identify a motility-induced swim stress that adds to the interaction stress to determine the global contractility or extensibility of epithelia. We further show that the temporal correlation of the interaction shear stress determines an effective viscosity of the tissue that diverges at the liquid-solid transition, suggesting the possibility of extracting rheological information directly from traction data.
细胞集体迁移是一个高度受调控的过程,涉及到伤口愈合、癌症转移和形态发生。细胞之间的力学相互作用提供了一个重要的调节机制,以协调这种集体运动。利用将细胞力学与细胞形状和细胞运动联系起来的自推进 Voronoi(SPV)模型,我们制定了一种广义的力学推断方法,从运动组织中测量的牵引力中获得细胞应力的时空分布,并表明这种基于牵引力的应力与从瞬时细胞形状计算出的应力相匹配。我们还利用应力信息来描述组织的流变性质。我们确定了一种由运动诱导的游动应力,该应力与相互作用应力相加,以确定上皮组织的整体收缩性或伸展性。我们进一步表明,相互剪切应力的时间相关性决定了组织的有效粘度,该粘度在液-固转变时发散,这表明可以直接从牵引力数据中提取流变信息。