Ivakhnitskaia Evguenia, Lin Ryan Weihsiang, Hamada Kana, Chang Chieh
Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA.
Medical Scientist Training Program, University of Illinois at Chicago, Chicago, IL, USA.
Wiley Interdiscip Rev Dev Biol. 2018 Mar;7(2). doi: 10.1002/wdev.305. Epub 2017 Nov 15.
Molecular oscillators are well known for their roles in temporal control of some biological processes like cell proliferation, but molecular mechanisms that provide temporal control of differentiation and postdifferentiation events in cells are less understood. In the nervous system, establishment of neuronal connectivity during development and decline in neuronal plasticity during aging are regulated with temporal precision, but the timing mechanisms are largely unknown. Caenorhabditis elegans has been a preferred model for aging research and recently emerges as a new model for the study of developmental and postdevelopmental plasticity in neurons. In this review we discuss the emerging mechanisms in timing of developmental lineage progression, axon growth and pathfinding, synapse formation, and reorganization, and neuronal plasticity in development and aging. We also provide a current view on the conserved core axon regeneration molecules with the intention to point out potential regulatory points of temporal controls. We highlight recent progress in understanding timing mechanisms that regulate decline in regenerative capacity, including progressive changes of intrinsic timers and co-opting the aging pathway molecules. WIREs Dev Biol 2018, 7:e305. doi: 10.1002/wdev.305 This article is categorized under: Invertebrate Organogenesis > Worms Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Nervous System Development > Worms Gene Expression and Transcriptional Hierarchies > Regulatory RNA.
分子振荡器因其在诸如细胞增殖等一些生物过程的时间控制中所起的作用而广为人知,但对细胞分化和分化后事件进行时间控制的分子机制却了解较少。在神经系统中,发育过程中神经元连接的建立以及衰老过程中神经元可塑性的下降都受到精确的时间调控,但其时间机制在很大程度上尚不清楚。秀丽隐杆线虫一直是衰老研究的首选模型,最近它又成为研究神经元发育和发育后可塑性的新模型。在这篇综述中,我们讨论了发育谱系进程、轴突生长与寻路、突触形成与重组以及发育和衰老过程中神经元可塑性的时间调控新机制。我们还提供了关于保守的核心轴突再生分子的当前观点,旨在指出时间控制的潜在调控点。我们强调了在理解调节再生能力下降的时间机制方面的最新进展,包括内在定时器的渐进变化以及对衰老途径分子的利用。WIREs发育生物学2018年,7:e305。doi:10.1002/wdev.305 本文分类如下:无脊椎动物器官发生>蠕虫;时空模式的建立>大小、比例和时间的调控;神经系统发育>蠕虫;基因表达与转录层次>调控RNA。