Suppr超能文献

发育和衰老过程中神经元可塑性的时间安排。

Timing of neuronal plasticity in development and aging.

作者信息

Ivakhnitskaia Evguenia, Lin Ryan Weihsiang, Hamada Kana, Chang Chieh

机构信息

Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA.

Medical Scientist Training Program, University of Illinois at Chicago, Chicago, IL, USA.

出版信息

Wiley Interdiscip Rev Dev Biol. 2018 Mar;7(2). doi: 10.1002/wdev.305. Epub 2017 Nov 15.

Abstract

Molecular oscillators are well known for their roles in temporal control of some biological processes like cell proliferation, but molecular mechanisms that provide temporal control of differentiation and postdifferentiation events in cells are less understood. In the nervous system, establishment of neuronal connectivity during development and decline in neuronal plasticity during aging are regulated with temporal precision, but the timing mechanisms are largely unknown. Caenorhabditis elegans has been a preferred model for aging research and recently emerges as a new model for the study of developmental and postdevelopmental plasticity in neurons. In this review we discuss the emerging mechanisms in timing of developmental lineage progression, axon growth and pathfinding, synapse formation, and reorganization, and neuronal plasticity in development and aging. We also provide a current view on the conserved core axon regeneration molecules with the intention to point out potential regulatory points of temporal controls. We highlight recent progress in understanding timing mechanisms that regulate decline in regenerative capacity, including progressive changes of intrinsic timers and co-opting the aging pathway molecules. WIREs Dev Biol 2018, 7:e305. doi: 10.1002/wdev.305 This article is categorized under: Invertebrate Organogenesis > Worms Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Nervous System Development > Worms Gene Expression and Transcriptional Hierarchies > Regulatory RNA.

摘要

分子振荡器因其在诸如细胞增殖等一些生物过程的时间控制中所起的作用而广为人知,但对细胞分化和分化后事件进行时间控制的分子机制却了解较少。在神经系统中,发育过程中神经元连接的建立以及衰老过程中神经元可塑性的下降都受到精确的时间调控,但其时间机制在很大程度上尚不清楚。秀丽隐杆线虫一直是衰老研究的首选模型,最近它又成为研究神经元发育和发育后可塑性的新模型。在这篇综述中,我们讨论了发育谱系进程、轴突生长与寻路、突触形成与重组以及发育和衰老过程中神经元可塑性的时间调控新机制。我们还提供了关于保守的核心轴突再生分子的当前观点,旨在指出时间控制的潜在调控点。我们强调了在理解调节再生能力下降的时间机制方面的最新进展,包括内在定时器的渐进变化以及对衰老途径分子的利用。WIREs发育生物学2018年,7:e305。doi:10.1002/wdev.305 本文分类如下:无脊椎动物器官发生>蠕虫;时空模式的建立>大小、比例和时间的调控;神经系统发育>蠕虫;基因表达与转录层次>调控RNA。

相似文献

1
Timing of neuronal plasticity in development and aging.
Wiley Interdiscip Rev Dev Biol. 2018 Mar;7(2). doi: 10.1002/wdev.305. Epub 2017 Nov 15.
2
Timing mechanisms in neuronal pathfinding, synaptic reorganization, and neuronal regeneration.
Dev Growth Differ. 2016 Jan;58(1):88-93. doi: 10.1111/dgd.12259. Epub 2016 Jan 9.
3
Regulation of neuronal development and function by ROS.
FEBS Lett. 2018 Mar;592(5):679-691. doi: 10.1002/1873-3468.12972. Epub 2018 Jan 26.
4
Control of developmental timing by micrornas and their targets.
Annu Rev Cell Dev Biol. 2002;18:495-513. doi: 10.1146/annurev.cellbio.18.012502.105832. Epub 2002 Apr 2.
5
RNA on the brain: emerging layers of post-transcriptional regulation in cerebral cortex development.
Wiley Interdiscip Rev Dev Biol. 2018 Jan;7(1). doi: 10.1002/wdev.290. Epub 2017 Aug 24.
6
A fly's view of neuronal remodeling.
Wiley Interdiscip Rev Dev Biol. 2016 Sep;5(5):618-35. doi: 10.1002/wdev.241. Epub 2016 Jun 28.
7
Neurogenesis, neuronal migration, and axon guidance.
Handb Clin Neurol. 2020;173:25-42. doi: 10.1016/B978-0-444-64150-2.00004-6.
8
The RNA-binding protein LIN28 controls progenitor and neuronal cell fate during postnatal neurogenesis.
FASEB J. 2019 Mar;33(3):3291-3303. doi: 10.1096/fj.201801118R. Epub 2018 Nov 13.
9
Temporal expression of neuronal connexins during hippocampal ontogeny.
Brain Res Brain Res Rev. 2000 Apr;32(1):57-71. doi: 10.1016/s0165-0173(99)00096-x.
10
Age-related decline in BubR1 impairs adult hippocampal neurogenesis.
Aging Cell. 2017 Jun;16(3):598-601. doi: 10.1111/acel.12594. Epub 2017 Apr 6.

引用本文的文献

1
Temporal evolution reveals bifurcated lineages in aggressive neuroendocrine small cell prostate cancer trans-differentiation.
Cancer Cell. 2023 Dec 11;41(12):2066-2082.e9. doi: 10.1016/j.ccell.2023.10.009. Epub 2023 Nov 22.
2
Brain-wide identification of LIN-41 (TRIM71) protein-expressing neurons by NeuroPAL.
MicroPubl Biol. 2021 Sep 23;2021. doi: 10.17912/micropub.biology.000472. eCollection 2021.
3
Dysfunction of the Blood-Brain Barrier-A Key Step in Neurodegeneration and Dementia.
Front Aging Neurosci. 2020 Jul 24;12:185. doi: 10.3389/fnagi.2020.00185. eCollection 2020.

本文引用的文献

1
C. elegans neurons jettison protein aggregates and mitochondria under neurotoxic stress.
Nature. 2017 Feb 16;542(7641):367-371. doi: 10.1038/nature21362. Epub 2017 Feb 8.
2
The Genetics of Axon Guidance and Axon Regeneration in Caenorhabditis elegans.
Genetics. 2016 Nov;204(3):849-882. doi: 10.1534/genetics.115.186262.
3
LIN41 Post-transcriptionally Silences mRNAs by Two Distinct and Position-Dependent Mechanisms.
Mol Cell. 2017 Feb 2;65(3):476-489.e4. doi: 10.1016/j.molcel.2016.12.010. Epub 2017 Jan 19.
5
Axon regeneration in C. elegans: Worming our way to mechanisms of axon regeneration.
Exp Neurol. 2017 Jan;287(Pt 3):300-309. doi: 10.1016/j.expneurol.2016.08.015. Epub 2016 Aug 26.
6
Translational profiling of retinal ganglion cell optic nerve regeneration in Xenopus laevis.
Dev Biol. 2017 Jun 15;426(2):360-373. doi: 10.1016/j.ydbio.2016.06.003. Epub 2016 Jul 26.
7
Regulation of Microtubule Dynamics in Axon Regeneration: Insights from C. elegans.
F1000Res. 2016 Apr 27;5. doi: 10.12688/f1000research.8197.1. eCollection 2016.
8
The Neuronal Kinesin UNC-104/KIF1A Is a Key Regulator of Synaptic Aging and Insulin Signaling-Regulated Memory.
Curr Biol. 2016 Mar 7;26(5):605-15. doi: 10.1016/j.cub.2015.12.068. Epub 2016 Feb 11.
9
Timing mechanisms in neuronal pathfinding, synaptic reorganization, and neuronal regeneration.
Dev Growth Differ. 2016 Jan;58(1):88-93. doi: 10.1111/dgd.12259. Epub 2016 Jan 9.
10
The C. elegans adult neuronal IIS/FOXO transcriptome reveals adult phenotype regulators.
Nature. 2016 Jan 7;529(7584):92-6. doi: 10.1038/nature16483. Epub 2015 Dec 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验